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Abstract: Protein—protein binding is one of the critical events in biology, and knowledge of proteic complexes
three-dimensional structures is of fundamental importance for the biochemical study of pharmacologic compounds.
In the past two decades there was an emergence of a large variety of algorithms designed to predict the structures of
protein—protein complexes—a procedure named docking. Computational methods, if accurate and reliable, could
play an important role, both to infer functional properties and to guide new experiments. Despite the outstanding
progress of the methodologies developed in this area, a few problems still prevent protein—protein docking to be a
widespread practice in the structural study of proteins. In this review we focus our attention on the principles that
govern docking, namely the algorithms used for searching and scoring, which are usually referred as the docking
problem. We also focus our attention on the use of a flexible description of the proteins under study and the use of
biological information as the localization of the hot spots, the important residues for protein—protein binding. The

most common docking softwares are described too.
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Introduction

Protein—protein binding is one of the critical events in biology.
It is crucial for increasing the knowledge of many biological
phenomena, and thus is of supreme significance in pharmaceuti-
cal or/fand medicinal sciences.' In the last years, experimental
and theoretical work has been devoted to unravel the principles
of protein-protein interactions.” It is extremely valuable to obtain
structural information for a complete understanding of both the
biochemical nature of the process for which the components
come together, and to facilitate the design of compounds that
might influence it. However, due to the greater difficulty in crys-
tallizing protein—protein complexes, there is relatively little
structural information available about them compared to the pro-
teins that exist as single chains or form permanent oligomers.’®
Hence, experimental studies are faced with outstanding technical
difficulties and the number of solved complexes deposited in the
Protein Data Bank (PDB; www.rcsb.org/pdb) is still orders of
magnitude smaller than those of experimental information on
protein interactions and of structures of individual proteins.?
This disparity reflects the fact that it is very difficult to prepare
complexes suitable for structural studies and to determine their
structures.”

Despite the practical difficulties for a better understanding of
the biological function of a protein, knowledge of its three-
dimensional structure is fundamental.* Protein structures have

been mainly achieved by two methods so far: X-ray crystallogra-
phy and nuclear magnetic resonance (NMR). X-ray and NMR
encounter difficulties in dealing with structures of complexes. In
fact, by X-ray, the dynamics of the complex formation makes
the crystallization difficult, while high molecular weight com-
plexes are difficult to deal with NMR.* Thus, in the past two
decades there was an emergence of a large variety of theoretical
algorithms designed to predict the structures of protein—protein
and protein-ligand complexes—a procedure named docking.® In-
terest in protein docking is growing within the scientific commu-
nity, and many interdisciplinary approaches are being applied to
model, predict, and understand protein—protein interactions, a
major challenge in structural biology.®

Protein docking studies, that is, the task of assembling two
separate protein components as the ones seen in Figure la and b
into their biologically relevant complex structure (Figure 1c) are
therefore important as an aid to our understanding of the ways
in which proteins bind.”®* Computational methods, if accurate
and reliable, can therefore play an important role, both to infer
functional properties and to guide new experiments. So, generat-
ing models of molecular complexes is of indisputable signifi-
cance and may provide additional insight into the nature of mac-
romolecular recognition. It is a demanding problem, which has
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Figure 1. X-ray structure of (a) FAB Hyhel63 antibody (PDBID:
1DQQ), (b) HEW lysozyme (PDBID: 3LZT) and (c) of the complex
formed between the two (PDBID: 1DQJ).

attracted a vast deal of attention due to its potential applications
in rational drug design and protein engineering.”'®

The first protein—protein docking algorithm was developed by
Janin and Wodak in 1978."! Although protein—protein docking
procedures should be a helpful guide for genetic and biochemi-
cal experiments, they must first be tested and their validity eval-
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uated.'>"® Thus, it is required to obtain objective estimates of
the model quality and of the performance of docking methods."*
Albeit important successes, docking procedures remain ham-
pered by the prediction of false positives and negatives.'’
Because of the complexity of the problem, protein—protein dock-
ing is still largely at the theoretical stage and there is still con-
siderable scope for the development of methodology.'®

The objective of protein—protein docking is to predict the
three-dimensional arrangement of a protein—protein complex
from the coordinates of its component molecules, being an accu-
rate prediction the one that will point out most of the residue-
residue contacts involved in the target interaction.'’** Usually,
this involves an exhaustive search of the rotational and transla-
tional space of one protein with respect to the other, resulting in
a six-dimensional search. One of the most important difficulties
of protein docking is that the interface residues of both the re-
ceptor and the ligand may undergo a conformational change on
complex formation. Although often the conformational change is
limited to side-chains, large backbone movements are sometimes
also observed.”* To develop protein—protein docking algorithms,
a perfect test case should be formed by the unbound three-
dimensional structures of both the receptor and the ligand, as
well as by the complex structure that is used only for assessing
the algorithm performance. The PDB contains only a limited
number of such test cases. In Figure 2 we can observe the num-
ber of X-ray structures deposited in the PDB since 1976. As we
can see, 6458 new structures became available last year.
Although every year more and more structures are becoming
available, the Protein—Protein Docking Benchmark,? consists of
only 124 cases for which high-resolution crystal structures are
available in both the unbound and bound states. The number of
the years between the deposition of the first of the three struc-
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Figure 2. Number of X-ray structures deposited in PDB per year.
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tures of the unbound-unbound test case and the last can vary
between 0 and 4 years but unfortunately, values such as 19 are
still found. We can just hope that this situation will be altered in
the next few years. Despite the fact that unbound-unbound con-
stitute a perfect test case, it is also adequate if only one unbound
structure is available, to use an unbound-bound test case, in
which the bound structure of the other molecule is used as it
appears in the complex and the other was crystallized as a free
protein.

Hence, there are three key ingredients in the docking: repre-
sentation of the system, conformational space search, and rank-
ing of potential solutions.?' Although these can vary the pro-
tein—protein docking contains certain problems common to all
procedures: “searching and scoring.”'® The first refers to how
accurately the energy function of a given protein—protein com-
plex is described, and the latter is concerned with obtaining the
global minimum energy structure of the complex using that
same energy function.?!

Searching

Nowadays, a number of programs perform “ab initio” protein—
protein docking using the same approach: one protein is fixed in
space and the second one is rotated and translated around the
first one. The disadvantage of these methods is that the search
through the entire conformational space of the complex geome-
try makes the calculation expensive, and therefore it is important
to consider the best orientation of their side chains leading to
the minimum energy and the best side chain contacts.* Thus, a
simple systematic search is usually impracticable even if the
molecules are treated as rigid bodies, in which the degrees of
freedom are limited to translational and rotational ones because
the searching algorithm entails evaluating in the order of billions
(10%) of distinct possibilities. More elaborate search techniques
are required and should be both accurate and efficient.'®

The docking method is generally based on the idea of com-
plementarity between the interacting molecules, which may be
geometric, electrostatic or hydrophobic, or all three. Geometric
complementarity of the protein surfaces is the filtering criterion
most commonly used to eliminate a large number of solutions
with poor surface matching.](”20 Although usually both proteins
are treated as rigid bodies, since to allow flexibility may be
computationally tricky, many shape-based docking algorithms
have been proposed. These can include other kind of informa-
tion such as hydrophobicity, electrostatics, which are used in
combination with shape matching or as a following filter.?
Thus, the complexity of computational docking increases in the
following order: rigid body docking (extremely basic model that
considers the two proteins as two rigid solid bodies), semiflexi-
ble docking (one of the molecules, typically the smaller ligand,
is the only one considered flexible), flexible docking (both mole-
cules are considered flexible, while obviously the degree of flex-
ibility of either or of both is unavoidably limited or simpli-
fied).>"* In protein—protein docking different methods have
been used to search the conformational space: matching the
position of surface spheres and surface normals,?’ application of
real space,”® or Fourier correlation techniques such as the fast
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fourier transform (FFT) algorithm, introduced by Katchalski-
Katzir,”® which evaluates the surface-surface contacts between
the candidate proteins while penalizing for protrusions into the
protein core.”** A correlation approach using spherical polar
basis functions is also possible.*

Other algorithms use matching of surface cubes®® or geomet-
ric hashing, i.e. the identification and matching of convex and
concave protein surface regions.”> ™ Genetic algorithms,*'
Brownian dynamics simulations,*> and combinations of Brown-
jan dynamics and energy minimization*® have also been applied
to deal with the protein docking problem.**

Representation of the System

The basic description of the protein surface is the atomic repre-
sentation of exposed residues, which can be usually achieved by
mathematical models, such as geometrical shape descriptors or a
grid.>" Geometric shape descriptors as sphere representations of
amino acids, negative sphere images of the binding site, molecu-
lar surface cubes, surface normals at sparse critical points, and
cross-sectional slices represented as polygons are widely used.’
One of the most commons ways is to represent the surface by
its geometric features such as the Connolly surface, which con-
sists of the part of the van der Waals surface of the atoms that
is accessible to the probe sphere (contact surface) connected by
a network of convex, concave, and saddle shape surfaces that
smoothes over the crevices and pits between the atoms.”!

The geometric descriptors could partly be associated with
further properties of physicochemical meaning or as an alterna-
tive grid representations may be used for the macromolecular
structure. This commonly refers to affinity grids, which are cal-
culated on the basis of force field potentials for van der Waals
and electrostatic interactions.' The protein interior, the surface
and the outer space can be differentiated by the use of grid-
based molecular representations in combination with Fourier
correlation algorithms. Albeit the representation of the macromo-
lecular target frequently involves similar descriptive method for
the ligand, the ligand may be also treated in a fully atomic
detail. For this it is essential to use the energy grid techniques.
A few alternatives of the grid approach also allow an atomic
representation of the binding site and represent only the bulk of
the receptor protein as a grid.'

Biological Information

Biological information available from experiments or from com-
putational methods on the likely regions or residues involved in
the interaction can confine the search of allowed complex con-
figurations or filter out wrong solutions.>'** Protein—protein
binding site identification can be achieved by potential hydrogen
bonding groups, enzyme clefts and charged sites on a protein
surface as well as structural comparisons with molecules with
known binding sites. Since binding sites are at least partially
flexible, searches for part-flexible part-rigid sites have also pro-
duced hopeful results. Algorithms that predict the location of
hinges and modes of motions, or those that carry out structural
comparisons of the protein family are also very helpful.>!*°
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Most docking studies focus on enzyme-inhibitor complexes
and antibody-antigen complexes since they present significant
differences in the interface residue composition, hydrophobicity
and electrostatics.**™>" For example, the catalytic triad of the
serine proteases (His, Asp, Ser) and the complementarity defin-
ing regions of immunoglobulins are both well characterized.”' In
general, a protease-inhibitor interface is more static and conse-
quently more easily predicted than an antibody-antigen inter-
face.?*>!

Hot spots may also be incorporated in the scoring process.
Hot spots have been defined as those sites where alanine muta-
tions cause a significant increase in the binding free energy of at
least 2.0 kcal/mol.**°*% To have a strong impact in protein
binding the binding free energy should be higher than 4 kcal/
mol (three orders of magnitude in the binding affinity constant).
However, residues whose mutation results in such a large differ-
ence are quite unusual, and the threshold for the hot spots had
to be lowered to 2 kcal/mol in order to get enough data for sta-
tistical analysis.>*>> Therefore, in a protein—protein interface, a
small subset of the buried amino acids typically contributes to
the majority of binding affinity as determined by the change in
the free energy of binding (AAGpjnging) upon mutation of the
residue to an alanine.’®>” It has been observed that hot spots are
preferentially located either on protrusions (“knobs”) or in
depressions (“holes”) of the protein surfaces and they are
coupled across the interface in tight fitting regions that exclude
solvent molecules.*® Interestingly, hot spot residues appear to
undergo little conformational changes upon binding, a property
that might facilitate their identification in the unbound state.*’
Nevertheless there are no general rules to predict a binding
interface. Therefore, machine learning techniques are being used
to predict automatically interfaces using a combination of vari-
ous factors: e.g. buried surface areas, desolvation and electro-
static interaction energies, hydrophobicity scores, and residue
conservation scores.”® % A variety of different techniques are
now being explored such as the evolutionary trace approach that
exploits the fact that functionally important residues are often
conserved across species,®’ sequence-base approaches that locate
correlated mutations in multiple sequence alignments for pairs
of interacting proteins across different organisms,® NMR data
such as chemical shift perturbations and residual dipolar cou-
plings are expressed in terms of ambiguous interactions restrains
by the software HADDOCK.*

As domain interactions frequently determine protein function,
an understanding of how domains combine and assemble is
clearly necessary. So, a related problem of considerable impor-
tance is domain docking meaning the prediction of the structure
of a multidomain protein from the structures of its component
domains.*’

Flexibility

Structures of protein complexes reveal intricate shape comple-
mentarity, which seemingly confirms the initial lock-and-key
description of protein interaction, first introduced by Fischer in
1894.% However, this model did not take into account the con-
formational changes that can occur upon binding. Daniel Kosh-
land’s (1958)"° induced fit model admits a certain degree of
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plasticity and postulates a mutual adaptation of the two proteins.
A range of studies including molecular, NMR, and single-mole-
cule FRET experiments, have questioned the extent to which
conformational change can be considered induced by the binding
partner. Therefore, a third model, inspired by the MWC mecha-
nism of allosteric regulation (Monod et al., 1965)71 and later
adapted to protein interactions by Kumar et al., a statistical
mechanics emerged recently as a result of view of protein bind-
ing.”* This model of conformational selection, postulates that
proteins exist as ensembles of conformations, and that the bind-
ing of the partner to a specific conformation shifts the equilib-
rium toward the specific binding conformation.”> A fourth model
is a hybrid conformer selection/induced fit (CS/IF) model pro-
posed by Grunberg et al.”® where binding is a two-stage process
that begins with conformational selection to form an encounter
complex, followed by an IF or ‘refolding’ step that leads to the
final bound conformation. The different conformations can pres-
ent various degrees of flexibility, which may consist of subtle
side-chain adjustments or may involve domain, tertiary, and/or
secondary structure motions.””’

In protein—protein docking, because of the large number of
atoms and degrees of configurational and conformational free-
dom involved, it would be impracticable to treat molecular flexi-
bility in an explicit way with the current computers available.**
This situation contrasts with small ligand-protein docking in
which usually the binding site is already known, and due to the
restricted nature of the problem and the small size of the ligand,
the flexibility can be taken into account later.”® Although easily
treated, flexibility still constitutes a major challenge in protein—
ligand docking due to the computational time needed’® Usually,
protein docking methods are based on rigid- or semirigid-body
treatment of the molecules that reduces the proteic complex to a
nonflexible structure resulting in a radical simplification of the
search process. However, this procedure can lead to wrong solu-
tions especially if the interacting molecular structures acquire
different conformations as they are in the unbound form or com-
plexed to the other protein.®® For example, in the case of anti-
bodies, a diversity of phenomena have been observed, ranging
from adjustments of single amino acid side chains, over loop
rearrangements, to entire domain movements.! The main defy in
computational protein—protein docking is to merge high-accuracy
energy calculations, speed and sampling power, and the ability
to handle induced conformational changes at the interface.®!

Since it is infeasible to explore all possible conformations,
protein flexibility is introduced into docking protocols in a vari-
ety of ways being the most common procedure the use of “soft”
scoring functions that accommodate flexibility while others ex-
plicitly include domain hinging movements or side-chain flexi-
bility in the docking.® Both backbone and side-chain flexibility
are also being introduced using molecular dynamics (MD) in
combination with some form of rigid-body docking, either
before or after the MD simulations.>"? Thus, as it is not feasible
to execute extensive conformational searches during docking,
unless the binding site is known, it has been generally adopted
the two-stage approach. Initially the receptor and ligand are
treated as rigid bodies and a fully exploration of the six-dimen-
sional rotational and translational degrees of freedom is made.
At a second stage, a much smaller number of structures acquired
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in the initial stage are refined and reranked by more scrupulous
energy functions that include small backbone and side-chain
movements as well as rigid-body adjustments to take into
account conformational changes.®> As it is difficult to perform
the three at the same time they can be done sequentially.®® A
number of algorithms have been developed for this purpose. We
will focus in some of the most commonly used.

Soft Docking

In the majority of the known protein complexes, the complex
structure of the proteins is only very vaguely changed, compared
to the free forms, with most of the conformational changes con-
fined to the side chain atoms of surface amino acids. Therefore,
with slight modifications of the basic rigid body procedure,
some techniques may tolerate a limited degree of molecular flex-
ibility by using a “soft” representation of the molecular sur-
face.**®° The soft docking concept, originally proposed by Jiang
and Kim, describes the molecular surface and volume as a cube
representation, which implies implicit conformational changes
by way of size/shape complementarity, close packing and liberal
steric overlap.®* Ritchie and Kemp introduced a ‘soft” model of
electrostatic complementarity in the algorithm.®* Palma et al.
proposed a surface implicit method in which the surface is rep-
resented by values 0 and 1 on two grids, the surface and core
grids.*'®® This digitization introduces the first level of ‘softness’
in the algorithm.*°

Therefore, soft docking methods generally use rigid-body
docking and smooth the protein surfaces or allow some degree
of interpenetration.”” They only deal with side-chain flexibility
and can be divided into brute force techniques,**®* randomized
methods”®" and shape complementarity methods.”?

Side-Chain Flexibility

Side-chain flexibility can permit in favorable cases an efficient
docking if some interfacial side-chains are in incorrect confor-
mations.® Totrov et al., 1994 published one of the first success-
ful ab initio predictions of a complex that combined pseudo
Brownian Monte Carlo minimization with a biased-probability
global side-chain placement procedure. They showed that side-
chain optimization was fundamental for discrimination of near-
native conformations from false positives.”*** The majority of
the methods adjust side chain conformations explicitly during a
refinement stage following the rigid-body search, which is char-
acteristically performed only for a selected set of protein side
chains close to the putative binding site and side chain confor-
mations are represented as a discrete set of rotamers from
libraries. These libraries are derived from statistical analysis of
side-chain conformations in known high-resolution protein struc-
tures.®* Originally it was proposed a method that uses pre-generated
side-chain rotamer libraries, which are subjected to optimization
during a ligand docking procedure via the dead-end elimination
algorithm, and subsequently scored in order to rank the lowest
energy combination of side-chain and ligand conformers.” Side-
chain flexibility was introduced in the Mining Minima optimizer,
which allows conformations of user-selected side-chains in the
active site to be optimized along with the conformation and
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position of the ligand.’*®” Some algorithms are also utilized
such as SOFTSPOTS that makes use of a knowledge-based
function, which identifies active site residues most likely to
undergo conformational change upon ligand binding. The associ-
ated PLASTIC algorithm generates the side-chain rotamers, or a
minimal conformational manifold, prior to docking calcula-
tions.®””

All the amino acids do not show the same degree of freedom.
Amongst the protein complexes arginine, lysine, glutamate, and
metionine preset the highest frequency and amplitude of move-
ments between the structures of free and co-crystallized pro-
teins.*® In contrast, many of the smaller polar or charged resi-
dues, such as asparagine, aspartate and histidine, and the large
aromatics, phenylalanine, tyrosine and tryptophan, are markedly
inflexible. At the binding interface, the degree of flexibility fol-
lows the order lysine > arginine > methionine > glutamine >
glutamate > isoleucine > leucine > aspargine > threonine >
tyrosine > serine > histidine > aspartate > cysteine > trypto-
phane > phenylalanine. Thus, the lysine side chains flex 25
times more often than do phenylalanine side chains.”®~'%

Backbone Flexibility

As already mention, a comparison of bound and unbound struc-
tures can reveal significant changes in backbone conformation
upon binding, which represents the greatest challenge to predic-
tive protein docking. The main challenge is the incorporation of
full backbone flexibility into protein-protein docking simulations,
due to the enormous complexity of size and degrees of freedom
of the conformational space of the backbone. Backbone flexibil-
ity can be treated at different stages of the docking procedure
and in different combinations.®? Sometimes, ensembles of con-
formations or backbone minimization are obtained prior to the
docking procedure because backbone deformation is more im-
portant to the global structure than side-chain deformation and
because side-chain conformations may depend of the backbone
torsional angles. As reviewed by Andrusier et al., 2008** the
flexible docking can be divided into three parts: (i) analysis of
flexibility of proteins by ensemble analysis, rigidity theory,
Gaussian network model, normal mode analysis, MD or essential
dynamics; (ii) flexible docking in which subdomains can be
docked separately and ensembles can be generated and docked
using cross-docking or the Mean Field Approach; (iii) refine-
ment of backbone (by normal modes minimization), side-chains
(mean field approach, iterative elimination, graph theory algo-
rithms)and rigid-body orientation (by a variety of minimization
methods).

The various biophysical models suggest distinct conforma-
tional sampling strategies in flexible protein docking. For exam-
ple, the key-lock model successful at predicting complexes for
proteins that undergo minimal backbone conformational change
upon binding, is the underlying idea for the original grid-based
and FFT techniques, and is included, among others, in ZDOCK/
RDOCK, ClusPro and RosettaDock.'®' In Koshland’s induced fit
model the backbone conformational space must be sampled ex-
plicitly during docking in response to local energetics of the
interface, which can be achieved by MD, energy minimization,
or gradient-based methods in MC minimization. In the confor-

DOI 10.1002/jcc



322 Moreira, Fernandes, and Ramos * Vol. 31, No. 2 * Journal of Computational Chemistry

mational selection model for docking, backbone flexibility is
modeled implicitly as a pregenerated ensemble of rigid struc-
tures generated from the unbound structure. The ensembles can
be achieved by using different solved three-dimensional struc-
tures from X-ray or NMR studies of diverse conformations of
the same protein. From a computational point of view, depend-
ing on the time scales and the energy barrier heights, MD and
Monte Carlo simulations that generate full receptor ensembles
have also been used to incorporate protein flexibility in dock-
ing.lg’76 However, MD can be used only to model small-scale
movements, in a nanosecond time scale, and sometimes the sim-
ulations can result in unrealistically docked substrates.®”%® This
can be overcome by restricting the degrees of freedom to the
torsional space and by using simulated annealing methods and
scaling/rescaling ligand-receptor interaction potential methods.
Multiple-copy simultaneous search methods can help to speed
up energy-based searches because they use numerous ligand
copies, which are transparent to each other but subjected to the
full influence of the protein. The docking algorithm based on the
hybrid CS/IF model would have combined both ensemble dock-
ing and explicit backbone flexibility during docking. For exam-
ple, HADDOCK combines both implicit and explicit backbone
flexibilities while incorporating biochemical information, and it
is capable of using ensembles from a wide variety of sources
including MD, homology modeling, or NMR structures.*

Normal-mode analysis can also be used to calculate the nor-
mal modes (a set of basis vectors) that are related with the flexi-
bility of the protein and therefore may be used to modeled large
global motions.'®" Two of the most common models used for
normal modes calculations are the Anisotropic Network Model
and the Gaussian Network Model. Dobbins et al. used normal
modes, which are related to the thermal motion of individual
proteins, to gain insights into the nature of conformational
changes in protein—protein interactions by identifying the mobile
regions and reproducing the directions of conformational
changes. Only backbone motion is studied because the model
used to calculate the normal modes considers Ca atoms only.”
Principal component analysis of MD trajectories is also being
used to generate conformations for docking by capturing the
main flexible degrees of freedom of a protein.'*>

In life we can find multiple domain proteins, which are pre-
dominant in eukaryotic proteomes and have been shown to play
a critical role in their structure and function.'?31%3 Therefore, it
is crucial to have the right computational tools to construct these
complex macromolecular structures even if biophysical data is
not available. Multimeric docking algorithms are being usually
developed by several groups (Table 5) in which some degree of
symmetry is applied to candidate dimmers, rejecting those that
produce intolerable steric clashes.”*'°"° During complex for-
mation, flexible segments that separate domains of multidomain
proteins or subdomains of proteins can move—hinge-bending
motions. There are some methods capable of dealing with this
type of flexibility. For example, the FlexDock algorithm from
the group that developed PatchDock, is initiated by the auto-
matic detection of the hinges by the HingeProt algorithm, an
NMA-based approach for the identification of hinge regions and
rigid parts given a single protein structure.''' Eisenstein et al.
also incorporate domain movement in their software Molfit in
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which individual domains of the molecules are treated as soft
rigid objects in multibody, multistage docking protocols.''?

Unfortunately, even with some recent improvements, the
treatment of flexibility is still a major problem for the docking
community as it can be seen by the CAPRI results, where in
cases with significant conformational changes the predictions
were disappointing.

Modeling Interfacial Water

Even though an O-ring hypothesis''? states that the majority of

the interfaces are generally occluded from the solvent, still
many interfaces present bound water molecules. Therefore,
although solvation and desolvation effects are crucially impor-
tant in the thermodynamics of complex formation, most docking
algorithms neglect to take into account the specific interactions
with water molecules that occur in some interfaces. Recently,
the HADDOCK software has been introducing explicit solvent
in the calculation in which the starting structure is solvated with
a 5.5 A solvent shell in a short MD run. This protocol is a very
promising methodology that result in considerably better scores
and RMS deviations than unsolvated docking for the majority of
the 10 complexes studied, which included examples of both wet
and dry interfaces.*

Scoring

Generally speaking, the protein—protein docking problem can be
classified as one of the global optimization problems, since its
key principle is to evaluate the energies of protein—protein dock-
ing poses so as to identify the pose with the lowest energy as
the predicted binding mode.?® So, the fundamental point of any
docking method is to be computationally efficient, having a
scoring scheme able of evaluating a huge number of solutions
and discriminating the correct binding modes from the decoy
complex structures.”! With the development of the Fourier corre-
lation approach,” it became computationally practicable to gen-
erate and evaluate billions of possible docked conformations by
simple scoring functions.

The geometry of the complex corresponding to the lowest
free energy of binding must be found, which it is not easy to do
considering the macromolecular nature of the protein, with its
high dimensionality of the coordinate space and considerable
complexity of the energetics governing the interaction.! In the
most favorable case, the best prediction is reasonably close to
the crystal structure, but none of the docking procedures
achieves this on all test complexes.'> As docking methods, force
fields, and degrees of refinement vary widely, the goal of having
a single scoring function for every model regardless of its source
might not be easily accomplished."'*''” This way, the docking
process should be able to discriminate between native-like and
wrong docked structures within a reasonable computation
time 21115

Most of the docking algorithms developed so far use the
extent of geometric complementarity of the protein surfaces as
an initial filter to eliminate a large number of solutions with
poor surface matching. It is, however, usually recognized that a
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criterion based exclusively on geometric complementarity is far-
off from being enough to distinguish among native and non-
native docked geometries, except for a very a small number of
cases.”® Numerous criteria have been implemented with different
levels of success: steric complementarity of the shapes of the
interaction sites, electrostatic interactions, and hydrogen bond-
ing. Furthermore, exclusion of the solvent from the interface and
the associated solvent entropy change play an important role in
stabilization of protein interactions, and can be estimated from
empirical potentials or data base derived functions.>"* These
scoring parameters can be divided into two groups: collective
parameters (refer to a property that characterizes the entire mol-
ecule) and individual parameters (refers to a specific atom or
residue).'® However, despite the method used for predicting the
most favorable interaction mode, none of the individual ener-
getic contributions that have been evaluated proves to be suffi-
cient, per se, to distinguish between native and misdocked struc-
tures for all tested complexes.'® The most natural scoring
scheme, the free energy of binding AGyjnging, is not easily acces-
sible but other scoring functions that model AGyinging as accu-
rately as possible, i.e. provide good correlations with experimen-
tal binding affinities, must be used.'® Some scoring functions
involve solvation potentials, empirical atom-atom or residue-res-
idue contact energies, and continuum electrostatics. However,
the empirical free energy and the molecular mechanics potential
alone cannot provide a valid discrimination of the true solution
because molecular mechanics potential is just part of the binding
free energy, and the entropy is not taken into account.
MMPBSA (Molecular Mechanics Poisson Boltzmann Surface
Area), or the free energy perturbation method may thus be used
to discriminate the correct docking structure.’® Hence, scoring
functions can be roughly classified into three distinct catego-
ries: knowledge-based, empirical and forcefield-based.”’
Docking algorithms can be classified by the phase of scoring
in the algorithm flow into two groups: integrated and edge
functions. In integrated algorithms, scoring is integrated into
the search stage and filter emerging solutions. In edge algo-
rithms, scoring is applied at the end of the search stage. The
major difference is that the scoring function forms part of the
design of the solutions in integrated algorithms but not in
edge algorithms.>!

The final score can be determined with regard to other solu-
tions, a known structure, or the solution itself. A solution with a
low rmsd from the complex is considered to be the correct one.
Usually, other solutions that differ only slightly from it should
be found, and therefore, a comparison of each solution with
other solutions, by a direct comparison or by clustering (dense
populations of predicted conformations), is beneficial. In princi-
ple, the cluster size may also be used as a parameter in a scoring
function.?! Therefore, scoring functions can include: heuristic
scores based on residue contacts, shape complementarity of mo-
lecular surfaces (“stereochemistry”), free energies, phylogenetic
desirability of the interacting regions, and clustering coefficients.
It is usual to combine one or more categories above in a
weighted sum whose weights are optimized on cases from the
benchmark. The benchmark cases used to optimize the weights
must not overlap with the cases used to make the final test of
the score to avoid bias.
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Recent developments in scoring functions have focused on
the estimates of geometric and energetic complementarity during
rigid-body search using terms derived from statistical analysis of
known interfaces or Machine Learning techniques,''” or more
sophisticated force fields used in subsequent refinement steps.''®
Bernauer et al., 2007 developed a scoring function based on a
Voronoi tessellation of the protein three-dimensional structures,
which provides a convenient low-resolution description of pro-
tein structure and protein—protein interfaces.!'® Using the
ROGER statistical learning procedure, they ranked the models
obtained by two different docking algorithms, improving in
almost all cases the rank of native-like solutions.''” Neverthe-
less, scoring continues to be one of the biggest challenges in the
docking procedure.

Critical Assessment of Prediction of Interactions

The international Critical Assessment of Prediction of Interac-
tions (CAPRI) experiment was designed to evaluate current
computational approaches that address protein—protein dock-
ing."?® The CAPRI is a community-wide experiment designed
according to the model of the Critical Assessment of Techniques
for Protein Structure Prediction (CASP).14 It was designed in
June 2001 at the Conference on Modeling Protein Interactions in
Genomes organized in Charleston, SC, by Ilya Vakser (Medical
University of South Carolina) and Sandor Vajda (Boston Univer-
sity). Unlike CASP, which has a fixed time schedule and targets
are single proteins, CAPRI targets are protein—protein complexes
and it is data-driven, meaning that starts whenever an experi-
mentalist offers an adequate target and ends 6-8 weeks later
with the submission of predicted structures.'*'?"1?2 Computa-
tional researchers are given the three-dimensional coordinates of
the unbound structures before the co-crystallized complexes are
published. The researchers are then given a few weeks to dock
the two structures together, and can use biological information
and literature searches. In just a couple of years, CAPRI chal-
lenge has provided the docking community with a unique blind
setting of simultaneously assessing all docking algorithms, and
has led to significant advances in the field.'>*'**

Therefore, the CAPRI experiment concentrates on a relatively
small number of prediction targets, with unknown three-dimen-
sional structures and all the groups participating in the experi-
ment study the same targets. This way, comparison of the per-
formance of different algorithms becomes easier because the
selection of targets, which may be harder or easier for predic-
tion, is eliminated and the bias, which is naturally introduced
when the predictor knows the expected results is also eradi-
cated.” One of the most imperative ambitions of CAPRI is to
comprehend how well present methods can unravel unbound-
unbound docking problems, which proved to be far from triv-
ial.'>> The participants can use any biochemical or structural in-
formation available in the literature, which can facilitate the
search toward correct solutions even for targets that would be
very difficult to predict without such additional information.'*

The CAPRI protein—protein targets present in Table 1 pro-
vided so far a good combination of problems with diverse levels
of complexity. T16 and T18 had to be cancelled, and predictions
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Table 1. CAPRI Protein—Protein Targets.

Round Target Complex Type of Complex Reference
1 TO1 HPr kinase/HPr Unbound-unbound 126
TO02 Rotavirus VP6/Fab Unbound-bound 127
TO3 Flu hemagglutinin/Fab Unbound-bound 128
2 T04 Amylase/camel VHH Unbound-bound 129
TOS Amylase/camel VHH Unbound-bound 129
TO6 Amylase/camel VHH Unbound-bound 129
TO7 Superantigen/TCRb Unbound-unbound 130
3 TO8 Nidogen/laminin Unbound-bound 131
T09 LicT dimer Unbound-unbound 132
4 T10 TBE virus E trimer Unbound-unbound 133
T11 Cohesin/dockerin (unbound) Unbound-homology model 134
T12 Cohesin/dockerin (bound) Unbound-bound 134
T13 SAG1/Fab Unbound-bound 135
5 T14 Phosphatase 1d/MYPTI Homology model-bound 136
T18 Xylanase/TAXI Unbound-bound 137
T19 Ovine prion/Fab Homology model-bound 138
6 T20 PrmC/RF1 Unbound-homology model 139
7 T21 Orcl/Sirl Unbound-unbound 140
8 T22 US-15K/U5-52K Unbound-unbound 141
T23 GBP1 GTPase domain Homodimer 142
9 T24 Arf1-GTP/ArfBD (unbound) Unbound-homology model 143
T25 Arf1-GTP/ArfBD (bound) Unbound-bound 143
10 T26 TolB/Pal Unbound-unbound 144
11 T27 E2-25KDA/UBC9 Unbound-unbound 145
12 T28 NEDDA4L dimer Homology model 146
13 T29 TRMS-TRMS&2 Homology model 147
14 T30 Rnd1-GTP/RBD dimer Unbound/unbound 148
15 T31 Racl-GTP/RBD monomer Unbound/unbound 149
T32 Subtilisin Savinase/Alpha-amylase Unbound/unbound 150
T33 RIma2 methyltransferase/RNA complex Homology model/unbound
T34 Rlma2 methyltransferase /RNA complex Homology model/bound
T35 Pair of covalently linked modules: CBM22 and GH10 Homology model/homology model
T36 Pair of covalently linked modules: CBM22 and GH10 Homology model/bound

of T15 were interrupted prematurely, as the corresponding ex-
perimental structure was published by the authors before the
deadline for submitting the predictions. T22 and T23 were also
canceled except for the docking servers. In order of preference,
the ideal would be to start with the coordinates of two unbound
molecules or with one bound and one unbound set of coordi-
nates, and finally if only the bound coordinates are available, to
start with the coordinates of the backbone.'” In CAPRI the
unbound-unbound targets appear to be intrinsically more difficult
than the bound-unbound targets because, as already mentioned,
molecules suffer conformational changes from the unbound to
the bound structures. There are three types of conformational
changes: involving small-scale, fast motions, involving large-
scale, slow domain motions, and the third outcoming of protein
“disorder.” In such cases, the native state has a small hydropho-
bic core, or the molecule (or its disordered domain) contains
uncompensated buried charges.'>

To assess the quality of the models, after a least-square
superimposition of the receptor in the model and target, three
aspects should be analyzed: the RMS distance L, between Ca
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atoms of the ligand (L) in the model and target, as well as the
rotation angle 0; and translation d; needed to further superim-
pose L; the interface RMS distance [, calculated with the
Ca’s of the epitopes only; and the fraction of native contacts f;.
= n./N., where N, is the number of residue pairs in contact in
the target, and n. the number of those native contacts that are
present in the model. These parameters /s, Lms, and f,. are
then combined to rank models. In models of the “high-quality”
and “medium” categories, f;. is higher than 0.3, I, is lower
than 2 A, Ly 1s lower than 5.0 A and the misorientation is
lower than 20° depending on the shape and size of the mole-
cules and the interface. Models with 10-30% of the native con-
tact pairs and /s between 2 A and 4 10\, are placed in the “ac-
ceptable” category. Although their geometry is poor, they should
still be useful for site-directed mutagenesis and other experi-
ments, because a large part of the epitopes must be correctly
identified to yield f,c > 0.1."> Table 2 summarizes the criteria
available for ranking the CAPRI predictions."?

Vajda et al."®> have demonstrated that the best predictors of
success in docking are the conformational change upon binding,
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Table 2. Criteria for Ranking CAPRI Predictions.

Rank f;w Ln’ns Or [rmS
High >0.5 <1.0 Or <1.0
Medium >0.3 1.0-5.0 Or 1.0-2.0
Acceptable >0.1 5.0-10.0 Or 2.0-4.0
Incorrect <0.1

the change in the solvent accessible surface area, and the hydro-
phobicity of the interface. They have calculated the change in the
solvent accessible surface area (AASA) by AASA = ASAcompiex—
ASA cceptor—ASAjigand. Where ASA denotes the solvent acc-
essible surface area of the proteins in the CAPRI contest. They
have measured also the hydrophobicity of the interface as the
free energy of desolvation upon association AGges, calculated
using the atomic contact potential (ACP),'*® an atom-level
extension of the Miyazawa and Jernigan potential>' as well as
the Co RMSD, the a-carbon root mean square deviation between
free and bound proteins. With this study they have divided the
protein—protein complexes in five different types present in
Table 3.'%

Contrasting with small molecule docking, which has become
a custom computational instrument in rational drug design, pro-
tein—protein docking has remained mainly an academic exer-
cise.'” A communitywide blind prediction helps to prove the
value of the prediction methods and assess their reliability,
before transferring the technology to a wider circle of users.'
The CAPRI challenge expose the work of the structural biolo-
gists who submit targets and offers the opportunity to evaluate
and compare different methods and protocols for protein—protein
docking. The results of the CAPRI rounds have shown that there
is a single method capable of docking each and every complex,
although acceptable predictions are made for most com-
plexes.”!'>?

The Software

The comparison of different docking programs and to rank their
relative performance is very important but extremely difficult
because most investigators have access to merely a partial num-
ber of methods for evaluation, the test cases tend to be limited
in the number and type of targets evaluated, and each algorithm
merges a particular search strategy and a particular scoring func-

tion."**!3 The algorithms mostly differ in the method for
searching the six-dimensional-transformation space that they
apply and in their evaluation of the resolved complexes, and are
computationally too expensive for large-scale experiments.”> As
different algorithms may perform better for different types of
complexes, a methodical exploration of all algorithms may
reveal directions of enhancement.’’ It is essential to stress that
recent progress in docking algorithms and computer hardware
makes it possible to implement such procedures as automated
Web servers, which greatly improves the utility of the docking
approaches in the biological community.'>® In this part of our
review we will focus in some softwares most frequently used to
perform protein—protein docking.

Attract

Attract is based on energy minimization of the binding proteins
and a reduced protein model (consisting of up to three pseudoa-
toms per amino acid residue) to allow systematic docking with
several thousands of initial configurations.® The interaction
between amino acids in the reduced model considers dissimilar-
ities in physicochemical character of the side-chains such that
complex formation is driven not only by surface complementar-
ity but also by the physicochemical character of the interacting
protein surfaces. The use of a reduced model allows a much
faster calculation of protein—protein interactions, the number of
distinct docking minima is much smaller compared with an
atomic detail representation of the protein surfaces. During
docking, both partners are considered as rigid, and a systematic
docking process consisting of a series of minimizations is per-
formed. The first three minimizations include a harmonic dis-
tance restraint between the two partners in order to generate an
initial tight complex, followed by free minimization towards the
closest minimum configuration.**'>’

Flexibility of the partner structures is taken into account by
representing flexible surface side-chains as multiple conforma-
tional copies.®**157158 Experimental data and knowledge of hot
spots can be taken into account at various stages of the docking
procedure.” Usually the presence of flexible surface loops,
which must adapt to the steric and electrostatic properties of a
partner, presents a major obstacle. Attract allows large loop
movements during a systematic exploration of the possible
arrangements of the two partners in terms of position and rota-
tion by taking into account an ensemble of possible loop confor-
mations by a multicopy representation within a reduced protein
model.'* Thus, Attract is based on a reduced protein model and
energy minimization of docked complexes. The program

Table 3. Classification of Proteic Complexes on the Basis of Docking Difficulty.

Type AASA (Az) AGye (kcal/mol)  Co RMSD

Expected difficulty of docking

I 1400-2000 <—4.0
I 2000-3000 <2.0
I 1400-2000 >—4.0
v <1400
v >2500 >2.0

Easy, unless key side-chains are in the wrong conformations
Moderated difficulty

Very difficult almost unpredictable

Very difficult

Rigid-body methods always seem to fail
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includes side chain flexibility (by a multicopy approach) and
global flexibility using normal mode variables during systematic
docking runs (in contrast to most programs that include flexibil-
ity only in a postprocessing or refinement step of rigidly docked
complexes).

BIGGER

BIGGER is a software that incorporates a soft-docking algorithm
to predict three-dimensional-structures of proteic complexes.
First a three-dimensional matrix (volume matrix) composed of
small cubic cells of 1 A size, which represents the complex
shape of each molecule is generated. Then, a grid-like search
algorithm is used to systematically search the binding space of
both molecules, and a structure is selected on the basis of the
geometric complementarity and amino acid pairwise affinities
between the two molecular surfaces. No information about the
binding site is used, and so all the proteic surfaces are subjected
to a detailed search. The scoring function comprise terms related
with the geometric complementarity of the surfaces, explicit
electrostatic interactions, desolvation energy, and pairwise pro-
pensities of the amino acid side chains to contact across the mo-
lecular interface.?®°

ClusPro

The web server, ClusPro,'® includes a rigid-body search, a rapid
estimation of the knowledge-based potentials, such as the
Atomic Contact Potential and electrostatic energies for filtering,
a ranking based on the clustering properties of low free energy
complexes, and a brief side-chain minimization using CHARMm
to remove clashes from the docked interface. The current ver-
sion includes two FFT-based docking programs, DOT'®" and
ZDOCK®* as its front-end performing a rigid-body search.''®
DOT runs retain 20,000 docked conformations, while ZDOCK
runs retained 2000 structures. Both DOT and ZDOCK use FFT
but DOT uses a shape complementarity score, whereas ZDOCK
scoring function includes a combination of shape complementar-
ity, Coulombic electrostatics, and desolvation free energy based
on the Zhang et al."**'®> atomic contact potential.*®*'** Through
the introduction of the Fourier correlation method, it is now pos-
sible to evaluate billions of putative complex structures.'®* The
algorithm filters the docked conformations by selecting the ones
with favorable desolvation and electrostatics properties, clusters
the retained structures using a hierarchical pairwise RMSD algo-
rithm, and selects the centers of the most populated clusters as
predictions of the unknown complex. The free energy filters
select complexes with lowest desolvation and electrostatic ener-
gies.!1®1?* Tt is possible to prohibit binding to certain regions
as well as select residues that should be close in the proteic
complex.'®

The server has also been further developed to allow modeling
of multimeric assemblies. Given the number of monomers form-
ing a multimeric complex and the structure of one monomer, the
method predicts the symmetry and structure of the complex. The
method was designed to scan all possible interactions, and select
the models with the broadest free energy funnels that also satisfy
the symmetry constraints without steric overlaps.'*
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FastContact’ is a server (http://structure.pitt.edu/servers/fast-
contact/) that estimates the direct electrostatic and desolvation
component of the free energy, based on a classic distance de-
pendent dielectric and an empirical contact potential for the des-
olvation contribution. This server was used in conjugation with
Cluspro in the latest targets of the CAPRI contest, and discrimi-
nated near-native predictions from docked conformations.'®*

Recently, some of the original authors of this software devel-
oped a new docking program PIPER based on the FFT correla-
tion approach. The PIPER program was used with a new class
of structure-based potentials called DARS (Decoys As the Refer-
ence State),”® based on the inverse Boltzmann approach. The
structures of the top-ranked clusters are further refined using
SDU, a stochastic global optimization method, which exploits
and utilizes the funnel-like behavior of the free energy function
AG in the regions of the conformational space defined by sepa-
rate clusters,'®>!6¢

3D-Dock

The 3D-Dock algorithm'®” is initiated by a global scan of trans-
lational and rotational space of possible positions of the two
binding partners, limited by surface complementarity and an
electrostatic filter using a standard FFT to search for putative
conformations.'®®'"" The scoring criterion is based on shape
complementarity but also incorporates an approximate electro-
statics scoring. The protein is described at the atomic level by
electrostatic and van der Waals interactions. Multiple copy rep-
resentation according to a rotamer library on a fixed peptide
backbone is used to model side-chain conformations. The bio-
logical filter screens the conformational space of the complexes
by restricting the distance between different groups of residue of
the two interfaces.>'’*!”! An energy minimization is made to
remove steric clashes on the side-chains of the interface, and
thus it models the effects of side-chain conformational change
and the rigid-body movement of the interacting proteins during
refinement. Thus, the program uses a rotamer library to reposi-
tion the side-chains; it refines the position of the backbone in a
deterministic manner toward local energy minima, and provides
an interaction energy value that we use as a score to rank the
putative conformations.>'’* At the end, rigid-body energy mini-
mization is performed to relax the interface.® Use of biological
information as distance constraints to filter complexes appears to
be essential generating three-dimensional-Dock predictions with
an RMSD lower than 1 A.'%8

Recently, Sternberg et al. have created a server: three-dimen-
sional-Garden, Global And Restrained Docking Exploration
Nexus (http://www.sbg.bio.ic.ac.uk/~3dgarden), which uses an
ensemble generation based on the marching cubes algorithm'”®
with a conformational refinement engine to form a comprehen-
sive framework for flexible docking. Three-dimensional-Gar-
den’s scoring procedure is more basic than most other docking
protocols since it includes no clustering step and no explicit sol-
vation term.'”*

Bates et al. uses a modified version of the FT_Dock (a com-
ponent of the three-dimensional-Dock). The main difference is
the sampling process that also includes MD, which allows the
consideration of backbone flexibility. It also provides a side-
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chain multicopy flexible refinement force field, and it uses an
orientation filter to treat oligomerization symmetry.”

DoT

DOT performs an FFT systematic search of basically rigid mole-
cules, over usually a 1 A translation step and a 4° rotation step.
It can permit a limited amount of presumed flexibility by allow-
ing a certain number of atoms to collide in a particular run.
Symmetry can be treated by reducing the conformational search,
which can be achieved by limiting the set of rotations to be con-
sistent with such symmetry. The DOT energy model consists of
an electrostatic component and a nonbonded contact term, but
not explicit desolvation. Thus, DOT evaluates the energy of
interaction for many orientations of the moving molecule by
summing the Boltzmann factor and the van der Waals contribu-
tion over all rotations at each grid point.'®"!">

The DOT authors participated in the CAPRI contest with a
methodology that involves starting from 100,000 DOT results, a
geometric complementarity analysis performed for the top 1500
DOT results by using the FADE program, proximity analysis by
a distance cutoff filter and FADE to determine the amount of
contact and shape complementarity between regions of interest,
and cluster analysis performed on the top 1000 results returned
by DOT. Finally manual inspection using computer graphics or
three-dimensional printing excluded those that were clearly not
possible due to unfavorable charge-charge interactions. Those
with more favorable interactions, including charge-charge,
hydrogen bonding, nonpolar-nonpolar are then selected.'®!!76:!77

Gramm-X

The Gramm-X implements a rigid-body fine-grid FFT search
with a smoothed Lennard-Jones potential to accommodate con-
formational changes, followed by local minimization and rescor-
ing. The resulting local minima are re-ranked according to the
weighted sum of Lennard-Jones potential, pairwise residue-resi-
due statistical preferences, cluster occupancy, and the degree of
the evolutionary conservation of the predicted interface.'>® Flex-
ibility was not taken into account in the CAPRI contest. To take
into account the degree of change at the interface area, bound
conformations of the most flexible interface side chains were
substituted into the unbound structures from the benchmark
complexes. It was demonstrated that the knowledge of the con-
formational change upon binding of only three critical interface
side chains per complex would provide a 40% improvement of
the benchmarking results, and beyond that other factors such as
backbone changes and force field accuracy would dominate.'”
In predictive docking experiments the interface side-chains and
the extent of their conformational change upon binding are not
know but could be estimated by rotamer library analysis or force
field simulation (Monte Carlo or MD). Biological information
such as interacting residue data from mutational studies and gen-
eral knowledge about the interaction being studied is not used
during the docking algorithm. Thus, the proteic complex should
be manually inspected.'’® Dockground'” project (http://dockground.
bioinformatics.ku.edu) focuses on generation of comprehensive
and sophisticated datasets for developing and validating new
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docking methodologies. One of the key aspects are unbound (ex-
perimental and simulated) protein structures, corresponding to
complexes of known structure, which are much more limited
than those for the bound sets, because only a limited number of
proteins are crystallized in both bound and unbound form.'®'

HADDOCK

HADDOCK starts with a randomization of orientations and rigid
body energy minimization, followed by semirigid simulated
annealing in torsion angle space, and final refinement in Carte-
sian space with explicit solvent. During the last two phases, the
amino acids at the interface (side chains and backbone) are
allowed to move to optimize the interface packing.* Biochemical
and/or biophysical interaction data such as chemical shift pertur-
bation data resulting from NMR titration experiments or muta-
genesis data information about protein-protein interface residues
is often used to reduce the conformational search space or filter
the solutions. One of the most fundamental differences in com-
parison with other algorithms is that HADDOCK translates in-
formation about the interface into highly ambiguous inter-
molecular distance restraints used to directly drive the docking
process. '8!

Flexibility is introduced at several levels in the algorithm: by
docking from ensembles of structures and taking all possible
pairwise combinations; by introduction of flexibility in the side
chain at the interface; and by allowing both side-chain and back-
bone flexibility in the final refinement stage. Flexibility also con-
siderably improved the ranking of structures. In addition to the
explicit inclusion of flexibility in the refinement stage, it is also
implicitly included in the rigid-body docking stage by starting
from ensembles of structures obtained from short MD simula-
tions in explicit solvent.'® The final structures are clustered
using the pairwise backbone RMSD at the interface and ana-
lyzed according to their average interaction energies (sum of
electrostatic, van der Waals and Ambiguous Interaction
Restraints that are derived from any kind of experimental infor-
mation available concerning the residues involved in the inter-
molecular interaction) and their average buried surface area.*
Recently, explicit inclusion of interfacial water was incorporated
in the docking protocol and incorporated in the latest CAPRI
predictions.'® A consistent improvement is observed for Fnat
after water refinement, casing an aceeptable prediciton to
become a medium prediciton.'®* Recently this group lauched a
new web server that can found at http://haddock.chem.uu.nl/
Haddock/haddockserver-file.php.

ICM-DISCO

The ICM-DISCO protein—protein docking method is a direct
stochastic global energy optimization from multiple starting
positions of the ligand, which shows the ability to distinguish
near-native rigid-body geometries in a relatively low number of
alternative docking poses.®'®® The rigid-body uses ICM pseudo-
Brownian'®® optimization of binding potentials precalculated on
a three-dimensional grid: van der Waals potential, an electro-
static potential corrected for the solvation effect, the hydrogen-
bonding potential, and a hydrophobicity potential. The solvation

DOI 10.1002/jcc



328 Moreira, Fernandes, and Ramos * Vol. 31, No. 2 * Journal of Computational Chemistry

energy based on atomic solvent-accessible surfaces was added to
the total energy to re-evaluate the docking solutions obtained
from unbound subunits. It is followed by a refinement of the sol-
utions and final scoring, which includes specific filtering crite-
rion on a case-by-case basis. A new desolvation descriptor,
based on atomic solvation parameters (ASPs) derived from octa-
nol-water transfer experiments, was optimized for rigid-body
docking. Symmetry is imposed as an intrinsic feature of the
model, so that only symmetric configurations can be realized
throughout the course of the docking procedure.6 The algorithm
handles the induced changes of surface side-chains but is less
successful if the backbone undergoes large scale rearrange-
ments.'8>!8%¢ Recently some of the developers of ICM-DISCO
created a new protocol called pyDock, based on FFT generation
of rigid-body docking solutions, with a scoring function consist-
ing on electrostatics and desolvation energy terms.'®’

Molfit

Molfit"®® starts by a weighted-geometric search, in which con-
tacts involving specified parts of the surfaces of either one or
both molecules are up-weighted or down-weighted, and in which
the whole rotation-translation space is scanned (global scan) or a
part of it (partial scan). The molecules are represented by three-
dimensional grids that carry information on the shape and the
chemical character of the molecular surfaces. The grids are cor-
related using FFT.'® The weights are based on available struc-
tural and biochemical data or on sequence analyses. In addition,
a geometric scan should be performed to get an estimate of the
outcome of weighing. The solutions in each scan are sorted by
their complementarity scores.”> The top ranking solutions from
each scan are filtered, clustered, and manually analyzed. The
manual viewing serves to eliminate severe clashes and to esti-
mate qualitatively the possibility of ion pair and hydrogen bond
formation across the interface. At the end of the procedure, the
best solutions are refined by small rigid body rotations of 2°
around the position obtained in the scan.’> 8819

PatchDock

PatchDock?>!'?! is a geometry-based molecular docking algo-
rithm, which divides the Connolly dot surface representation of
the molecules into concave, convex and flat patches and matches
complementary patches in order to generate candidate transfor-
mations. Small-scale flexibility is taken into account implicitly
by allowing some extent of steric clashes.'”"'> Each candidate
transformation is further evaluated by a scoring function that
considers both geometric fit and atomic desolvation energy. So,
candidates are ranked according to a geometric shape comple-
mentarity score, where surface contact is scored positively and
“acceptable” steric clashes are penalized.'®’ Finally, an RMSD
clustering is applied to the candidate solutions to remove super-
fluous solutions. PatchDock does a fast transformational search,
which is driven by local feature matching and utilizes advanced
data structures and spatial pattern detection techniques, such as
geometric hashing and pose clustering.”® PatchDock enables
integration of external information concerning potential binding
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sites such as restricting the matching stage to patches that
include residues important for binding.'?>

Although PatchDock does not perform side-chain refinement,
recently a new server was launched by the same authors: Fire-
Dock  (http://bioinfo3d.cs.tau.ac.il/FireDock), which includes
optimization of side-chain conformations and rigid-body orienta-
tion, and allows performing a high-throughput refinement.'*?

RosettaDock

RosettaDock uses real-space Monte Carlo minimization (MCM)
on both rigid-body and side-chain degrees of freedom to identify
the lowest free energy of the docked proteic complex.”’ After a
low-resolution search, explicit side chains are added to the pro-
tein backbones using a backbone-dependent rotamer packing
algorithm. The sampling problem is attacked with supercomput-
ing clusters to create very large numbers of decoys, which are
discriminated using a scoring function including van der Waals
and solvation interactions, hydrogen bonding, residue-residue
pair statistics, and rotamer probabilities. Decoys are then ranked,
clustered, manually inspected, and selected. Algorithm conver-
gence, as measured by solution degeneracy after decoy cluster-
ing, is used as a final criterion in decoy selection.”**' Recent
modifications of the protocol have improved side-chain model-
ing by enhancing side-chain conformational sampling through
gradient based off-rotamer optimization first introduced by
Abagyan et al.,"®* and also by including information from the
unbound structures.'*’ Prediction are usually performed without
including any a priori biological information, being the energy
of a model the primary criterion for the selection of the submis-
sions. However, in some cases, biological information con-
straints can be used.”’ To select the final models, the largest
clusters and best scoring decoys can be examined manually to
look for special features such as specific contacts (i.e., close
contacts, hydrogen bonds, or hydrophobic packing), chemical
environment (exposed hydrophobic groups or buried polar
groups), overall fit (size and shape of interface or the presence
of voids at the interface), and general arrangement (the number
of complementarity determining region loops interacting with
the antigen).”’

Baker uses a modified version of the RosettaDock that
includes an additional local refinement of models, the energy fil-
ters were transformed into target-specific at each step, resulting
in maximal enrichment of low-energy models in the global
run.'”> The increased sampling of side-chain conformations is
achieved through an additional step that includes off-rotamer,
gradient-based minimization (RTMIN: Rotamer Trial with Mini-
mization in torsion space). Additionally, side-chain conforma-
tions of the free monomers are added to the rotamers from the
backbone dependent library. For the prediction of the structure
of homomultimers, there is a search for the optimal conforma-
tion within the space of symmetric conformations. The homo-
multimer is created from symmetry operations based on the ordi-
nates, ensuring full sampling of possible symmetric conforma-
tions.'”®

Recently, a RosettaDock server (http://rosettadock.graylab.
jhu.edu) was developed, which allows the identification of low-
energy conformations of a protein—protein interaction, near a
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given starting configuration, by optimizing rigid-body orientation
and side-chain conformations.'®’

SKE-DOCK

Initially this server used the benzene cluster (BC) fitting as a
searching method but, as the results of earlier CAPRI rounds
showed that it is impossible to obtain a fully correct docking
structure, if the docking structures generated by BC fitting
proved to be wrong, that searching method would be changed
by a geometric docking method.'”® Two of the main advantages
of the geometric docking, which superimposes a pair of quadran-
gular pyramids representing the local shape feature of the recep-
tor or ligand, are its speed or alternatively the number of sam-
ples processed. To remove side-chain clashes it was used the
automated homology modeling program FAMS, which is based
on database searches for homologous structures and simulated
annealing energy minimization, and includes main chain adjust-
ments. They use a knowledge-based scoring function to calculate
the model quality from the side-chain environment of each
amino acid residue from three parameters: the fraction of the
molecular surface area of the side-chain covered by the polar
atom, the fraction of the side-chain area buried by some other
atoms, and the secondary structure,'9*2%

SmoothDock

SmoothDock is an algorithm that includes four steps: rigid body
docking using the FFT-based program DOT,'®? reranking of the
structures according to a free energy estimate that includes both
desolvation and electrostatics, filtering of the complexes using a
pairwise RMSD criterion, and subjection of the 25 largest clus-
ters to a smooth docking discrimination algorithm described in
Camacho and Vajda*' where van der Waals forces are taken
into account.'?® Usually no constrains on the binding area are
imposed.'*® As an alternative method for refinement, Camacho
and Vajda were able to exploit the distance dependencies of var-
ious energy functions to optimize the geometric position of the
ligand with respect to the receptor. They have shown that the
electrostatic component dominates the energy equation while
the proteins are far apart, guiding the correct interfaces towards
each other. As the proteins approach each other, the desolvation
component plays a larger role in the energetics of interaction.
Finally, once the interfaces become fully desolvated, the van der
Waals energy plays a much more dominant role. They consider
these distant-dependent properties of protein—protein binding and
linearly increase the vdW contribution to binding with respect to
the electrostatic and desolvation components of the free energy
as the software progresses. This refinement has the capability of
refining clusters of protein complexes from 10 Angstroms A)
from the native complex to fewer than 4 A from the native.
Lastly, each cluster is refined by linearly varying the weights of
the van der Waals forces, atomic contact potential (ACP), and
electrostatic components to the free energy of binding.*

ZDOCK

ZDOCK is a rigid body FFT based algorithm that combines
shape complementarity, desolvation, and electrostatics. It

Journal of Computational Chemistry

searches the rotational space explicitly being the translational
space searched by using an FFT algorithm.®*'** ZDOCK should
be use in combination with RDOCK that is an energy minimization
algorithm for refining and reranking ZDOCK results.*20>204
Biological information should be used on some level to discour-
age contacts between certain residues in the ZDOCK predic-
tions. Blocking of the chosen atoms of the residues may be
done.’®2% ZDOCK is usually used in conjugation with
RDOCK. RDOCK is implemented as a protocol in CHARMm
involving the following three steps: remove clashes that occur
from the soft-shape complementarity parameter in ZDOCK that
allows for small conformational change; optimize polar interac-
tions; and optimize charge interactions. The key factor of
RDOCK is a three stage energy minimization scheme, followed
by the evaluation of electrostatic and desolvation energies.
RDOCK represents a simple approach toward refining unbound
docking predictions.’®>%* After the use of RDOCK the predic-
tions are rescored using both electrostatics and desolvation
terms, and the new scores are use to re-rank the top ZDOCK
predictions.®****?> Thus, the method used by the authors
include: ZDOCK, RDOCK, clustering of the top predictions
after RDOCK to reduce structural redundancy, contact filtering
and manual inspection, 50202204

As the RDOCK minimization step can be lengthy and its
success is limited by the number of near-native structures pro-
duced by ZDOCK, the authors developed a new program:
ZRANK (Zlab Rerank) that quickly reranks the rigid body dock-
ing results from ZDOCK 203206

Table 4 resumes all the crucial characteristics of the soft-
wares described earlier. We focus essentially in the algorithm
used for searching and scoring, the use of biological informa-
tion, flexibility and symmetry. Nowadays the majority of the
methods include a step of side-chain modeling. RosettaDock”’
as well as ICM'® and the Bates three-dimensional-Dock®
group uses more than one strategy to handle side-chain flexibil-
ity such as rotamer library, energy minimization, pseudo-
Brownian Monte Carlo minimization or multiple copy refine-
ment techniques. HADDOCK” uses simulated annealing start-
ing from several side-chain conformations for each residues
and Attract** incorporates side-chain flexibility at the docking
step. Backbone flexibility is very difficult to treat. Usually a
global refinement step is introduced that enables only small
backbone adjustments. HADDOCK®* and the version of three-
dimensional-Dock® of the Bates group allow backbone flexibil-
ity being able of producing larger structural deformations than
the first ones. Molfit'®® and PatchDock?®'®> can handle confor-
mational changes of any sizes such as the ones involving
movements of whole domains. A large number of the softwares
introduced earlier have produced a way for docking identical
subunits into symmetrical assemblies. We can also observe that
there are a large number of methods for the scoring of the
results, which can use different combination of terms such as
shape complementarity, van der Waals, Coulomb and desolva-
tion terms, rotamer probabilities, contact pair potentials or
knowledge-based potentials. Knowledge of the binding site is
very important to guide the protein—protein docking procedure,
and biological and structural information is becoming widely
used as experimental restrains to guide the search or in order
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Table 6. Summary of Docking Predictions in the CAPRI Contest.

Softwares TOl TO2 TO3 TO04 TO5 TO6 TO7 TO8 TO09 TIO TI11 TI2 TI13 TI4 TI8 TI9 T20 T21 T22 T23
Attract - . - - - - - ok 0 - - - EEE () ok 0 0
Bigger - 0 - 0 0 ok * 0 0 0 - 0 0 0 0 0 - - - -
ClusPro - - - - - - - ok 0 0 0 e * 0 0 * 0 (0] * 0
3D-DOCK (Sternberg) 0 * 0 0 0 e * ok 0 0 * * 0 Hk 0 * 0 0 - -
3D-DOCK (Bates) - - - 0 0 0 e * 0 # ok * 0 ok ok # 0 0 - -
Gramm-X (manual) 0 * 0 - - - - - 0 - - - ok ok 0 0 0 - -
Gramm-X (server) - - - - - - - - - - - - - - - - - 0 0 0
HADDOCK — _ _ — — — — _ —_ sk sk 0 sk skeokosk 0 0 0 sk — —
PatchDock (manual) * 0 0 0 0 Q ke * * # * 0 ok ok * 0 0 - -
PatchDock (server) - - - - - - - - - - - - - - - - - - * 0
Rosetta (Baker) 0 0 0 0 0 sk kR 0 0 AR GkER ek kR () kR * 0 - -
ROSETTA (Gray) 0 0 0 0 0 gk ek dekk - wEO kR () 0 0 ok 0 ok - 0
SKE-DOCK - - - - - - - - - - - - - - - - - - 0 0
Smooth-Dock (manual) — * 0 0 0 0 e ek ok 0 0 0 R kel ok ok * 0 0 - -
Smooth-Dock (server) - - - - - - - - - - - - - - 0 * 0 0
Total
Softwares T24 T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 T35 T36 Summary ALL uu UB
Attract 0 0 * * 0 0 NA sk 0 0 0 0 o) 7(23%) 4.@4*  1(2%
*3
012
Bigger - - - - - - NA - - - - - #ak () 2 (3%) (1%  1@2%
# ]
012
ClusPro 0 * 0 * 0 0 NA 0 0 * 0 0 Hk ] 8 (11%) 1.(1%) 4 (7%
sk ]
*6
017
3D-Dock 0 0 0 0 0 0 NA - - - - - ol | 8 (12%) 1(1%) 4 (7%
(Sternberg) w3k )
#5
016
3D-Dock 0 * 0 0 0 0 NA 0 0 0 0 0 wack ] 10 (15%) 3 (5%) 4 (5%)
(Bates) ** 3
*6
017
DOT 0 0 0 * 0 ok NA 0 0 0 0 0 HkE D 9 (17%*) 3 (4% 3 (8%
£ 5
*3
021
Gramm-X 0 0 ok * - 0 NA 0 0 0 0 0 #ak () 5 (8%) 2 (3*)  2(3%
(manual) w* 3
)
017
Gramm-X 0 ok 0 0 0 0 NA 0 0 0 0 0 #ak () 1 (2%) 0% 1(2%
(server) Kl |
#(
014
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Softwares

T24 T25 T26 T27 T28 T29 T30

T31

T32 T33 T34

T35 T36 Summary

Total

ALL

uu

UB

HADDOCK

Ic™M

Molfit

PatchDock (manual)

PatchDock (server)

Rosetta (Baker)

Rosetta (Gray)

SKE-DOCK

Smooth-Dock (manual)

SMOOTH-DOCK (server)

ZDOCK & RDOCK

0 sesksk

0 skok

sksk

sk

B

sk

EEd

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

ok

ks

ook

sk

ko)
*2
011
kkk 3
**6
%5
09
kkEk 4
**2
%8
017
o |
*Ek 4
%8
017
*E% ()
%2
011
kEkk 5
*k 5
%2
017
kkEk 4
*k 5
%1
019
0 0 kkk

sk

Ed

0
***4
**4
6
016
***0
**1
*
0 14
eskok 3
**7
6
0 14

10 (20%)

14 (26%)

13 (23%)

13 (19%)

3 (4%)

12 (27%)

10 (23%)

2 (3%)

14 (26%)

2 (3%)

16 (29%)

4 (7%)

3 (4%)

5 (8%)

6 (8%)

1(1%)

4 (9%)

4 (10%)

1(1%)

4 (7%)

1(1%)

4 (6%)

2 (4%)

7 (14%)

4 (10%)

3 (5%)

1(2%)

3 (7%)

3 (8%)

1(2%)

6 (14%)

1(2%)

6 (14%)

“0” indicates that none of the submitted predictions was of acceptable quality. “—
were submitted. “NA” indicates that the results are not available, “*” indicates that at least one of the submitted
predictions was in the acceptable range, “**” indicates that at least one of the submitted predictions was of medium
accuracy, and “***” indicates that at least one prediction was of high accuracy. In the total columns it is possible to
encounter the number of hits and the total number of stars (in brackets). UU-Unbound-unbound test cases, UB-

»

Unbound-bound test cases. “Man” means that the softwares were used under human supervision.

to filter wrong solutions. In Table 5 it is possible to en-
counter the main advantages and disadvantages of the soft-
wares. They are almost related with the time necessary to
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Table 7. Summary of Docking Predictions in the CAPRI Contest.

Software ALL Uu UB
Attract 0,68 1,00 0,67
Bigger 0,23 0,33 0,25
3D-Dock (Bates) 0,56 0,63 0,63
3D-Dock (Stenrsberg) 0,48 0,13 0,70
DOT 0,57 0,44 0,90
Gramm-X (man) 0,40 0,43 0,75
ICM 1,13 0,57 1,40
HADDOCK 0,95 1,17 1,00
Molfit 0,77 0,89 1,00
PatchDock (man) 0,63 1,00 0,50
Rosetta (Baker) 0,93 1,00 0,78
Rosetta(Gray) 0,79 1,43 0,80
Smooth (man) 0,87 0,78 1,40
7ZDOCK & RDOCK 0,97 0,67 1,40

UU, Unbound-unbound test cases; UB, Unbound-bound test cases;
“Man” means that the softwares were used under human supervision.

In Table 6 we have summarized the docking predictions in
the CAPRI contest taken from Wodak et al. 2003,]3 2005%7 and
2007°%® as well as from the CAPRI web address (http://capri.
ebi.ac.uk/). Although important to achieve some conclusions
from the analysis of the results we cannot forget that they are
not statistically very meaningful because the number of targets
is still very small. We can observe that there are a lot of accept-
able results from almost all the groups and that almost every
group (except the servers) have at least one high prediction. If
we analyze the results giving quantitative measures to the nonac-
ceptable, acceptable, medium and high results (a value of 0, 1,
2, or 3), which are present in Table 7, we notice that globally
ICM,'® ZDOCK.,* HADDOCK* and Baker (modified version
of RosettaDock)'®® must be the best predictors, followed closely
by Gray’s version of RosettaDock,”’ Camacho group’s Smooth-
Dock'?® with manual modifications, and Molfit.'"®® From the
unbound-unbound test cases we have to emphasize the very
good behavior of RosettaDock and HADDOCK,* followed by
Wolfson’s group PatchDock?'®! with manual modifications,
Attract, Molfit and Zdock. Regarding the unbound-bound test
cases ICM,' ZDOCK,®¥ ClusPro,'® and Camacho group
(SmoothDock'*® with manual modifications) have very good results
followed by Molfit,'"®® HADDOCK* and Dot.'®' Again we should
highlight that the lower performance scores might not necessarily
reflect the quality of the approach used by the different groups.

In Figure 3 we have plotted the number of citations per year
of the docking programs described earlier (data took from ISI
Web of Science considering the references from Table 4). From
Figure 3.1 it is possible to observe that only after 2003 there
was an increase of the number of citations of the protein—protein
docking softwares. Since their publication the most cited soft-
wares are HADDOCK,4 RosettaDock,91 three-dimensional-
Dock,'"” BIGGER,?® and Dot.'"®' It is possible to observe an
increase of the number of citations per year of the Patch-
Dock,23‘191 ClusPro,160 HADDOCK,4 RosettaDock®'  and
ZDOCK.® We have to stress that even though HADDOCK? is a

Journal of Computational Chemistry

recent software, it seems to be very popular presenting a clearly
higher number of citations per year. If we consider just papers
that apply the different softwares to specific biological problems
(represented in Figure 3.2) Haddock® is the most popular, fol-
lowed by ClusPro,"®® PatchDock®>'*! and RosettaDock.”!

The servers are also becoming very used because they greatly
improve the utility of the docking approaches in the biological
community. PatchDock®*'®' since January of 2004 has more
than 30,000 submissions, 12,000 of them in 2008, from around
4000 different users (Dr. Schneidman-Duhovny, private commu-
nication); ClusPro'®® since January of 2003 had around 18,600
jobs submitted by 2700 different users worldwide (Dr. Comeau,
private communication); the new version of ClusPro (PIPER)!%°
is still in development but had already 300 jobs submitted from
about 80 different users (Dr. Brenk, private communication);
Gramm-X'"® since 2006 has processed more than 12,000 jobs
submitted by more than 2300 users (Dr. Tovchigrechko, private
communication); RosettaDock”' server opened in April 2007,
and over 150 individuals have used the web server for more
than 800 docking jobs; SKE-DOCK'?® has monthly a 1-2 sub-
missions by 1-2 users (Dr. Terashi, private communication); and
HADDOCK server since June 1st 2008 has 1519 submissions
and 197 registered users.?!!

Conclusion

A comprehensive understanding of the interactions between pro-
teins is indispensable for interpreting many biochemical phe-
nomena and is of supreme practical relevance in pharmaceutical
and medicinal sciences. Computational docking tries to predict
the correct binding mode of the interacting partners, which has
been demonstrated to be a difficult assignment considering the
macromolecular nature of the protein. Thus, protein—protein
docking is a difficult challenge especially because of the differ-
ences between the conformations of the bound and unbound
molecules, which increase the dimensionality of the problem.
Usually, the protein—protein docking procedure begins by
treating the proteins as rigid bodies, perhaps with some surface
softness, searching the six-dimensional space of relative protein
orientations (translational and rotational) and identifying a set of
candidate structures using some simple scoring function, with
shape complementarity playing a major responsibility. Rescoring
with a better function of these structures is followed in order to
discriminate near-native orientations. Then full atomic detail is
added (if not before) as well as allowing the movement of the
sidechains and possibly backbone, minimizing an energy func-
tion. If extra biological information about the location of the
interface is available, it can also be used as early as possible to
simplify the search. From the results of the CAPRI experiment
and the software popularity we can observe that ICM,'®
ZDOCK,*” HADDOCK® and ROSETTADOCK’' seem to be
some of the best predictors that are most commonly used. Soft-
wares, such as HADDOCK4, which are capable of dealing with
side-chain and backbone flexibility as well as using biological
information regarding the complex in the searching stage, seem
to perform better in the protein—protein docking world.
However, because of the complexity of the problem, protein—
protein docking is still largely at the theoretical stage, and con-
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Figure 3. Number of citations per year of the docking programs described earlier. Data taken from
ISI Web of Science (February of 2007) considering the references from Table 4. (a) All articles are
considered.; (b) Only the articles with experimental predictions were considered.
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tinues to be a significant scientific challenge to structural biolo-
gists and the biomolecular modeling community.
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