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Abstract: Protein–protein binding is one of the critical events in biology, and knowledge of proteic complexes

three-dimensional structures is of fundamental importance for the biochemical study of pharmacologic compounds.

In the past two decades there was an emergence of a large variety of algorithms designed to predict the structures of

protein–protein complexes—a procedure named docking. Computational methods, if accurate and reliable, could

play an important role, both to infer functional properties and to guide new experiments. Despite the outstanding

progress of the methodologies developed in this area, a few problems still prevent protein–protein docking to be a

widespread practice in the structural study of proteins. In this review we focus our attention on the principles that

govern docking, namely the algorithms used for searching and scoring, which are usually referred as the docking

problem. We also focus our attention on the use of a flexible description of the proteins under study and the use of

biological information as the localization of the hot spots, the important residues for protein–protein binding. The

most common docking softwares are described too.
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Introduction

Protein–protein binding is one of the critical events in biology.

It is crucial for increasing the knowledge of many biological

phenomena, and thus is of supreme significance in pharmaceuti-

cal or/and medicinal sciences.1 In the last years, experimental

and theoretical work has been devoted to unravel the principles

of protein-protein interactions.2 It is extremely valuable to obtain

structural information for a complete understanding of both the

biochemical nature of the process for which the components

come together, and to facilitate the design of compounds that

might influence it. However, due to the greater difficulty in crys-

tallizing protein–protein complexes, there is relatively little

structural information available about them compared to the pro-

teins that exist as single chains or form permanent oligomers.3

Hence, experimental studies are faced with outstanding technical

difficulties and the number of solved complexes deposited in the

Protein Data Bank (PDB; www.rcsb.org/pdb) is still orders of

magnitude smaller than those of experimental information on

protein interactions and of structures of individual proteins.2

This disparity reflects the fact that it is very difficult to prepare

complexes suitable for structural studies and to determine their

structures.2

Despite the practical difficulties for a better understanding of

the biological function of a protein, knowledge of its three-

dimensional structure is fundamental.4 Protein structures have

been mainly achieved by two methods so far: X-ray crystallogra-

phy and nuclear magnetic resonance (NMR). X-ray and NMR

encounter difficulties in dealing with structures of complexes. In

fact, by X-ray, the dynamics of the complex formation makes

the crystallization difficult, while high molecular weight com-

plexes are difficult to deal with NMR.4 Thus, in the past two

decades there was an emergence of a large variety of theoretical

algorithms designed to predict the structures of protein–protein

and protein–ligand complexes—a procedure named docking.5 In-

terest in protein docking is growing within the scientific commu-

nity, and many interdisciplinary approaches are being applied to

model, predict, and understand protein–protein interactions, a

major challenge in structural biology.6

Protein docking studies, that is, the task of assembling two

separate protein components as the ones seen in Figure 1a and b

into their biologically relevant complex structure (Figure 1c) are

therefore important as an aid to our understanding of the ways

in which proteins bind.7,8 Computational methods, if accurate

and reliable, can therefore play an important role, both to infer

functional properties and to guide new experiments. So, generat-

ing models of molecular complexes is of indisputable signifi-

cance and may provide additional insight into the nature of mac-

romolecular recognition. It is a demanding problem, which has
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attracted a vast deal of attention due to its potential applications

in rational drug design and protein engineering.9,10

The first protein–protein docking algorithm was developed by

Janin and Wodak in 1978.11 Although protein–protein docking

procedures should be a helpful guide for genetic and biochemi-

cal experiments, they must first be tested and their validity eval-

uated.12,13 Thus, it is required to obtain objective estimates of

the model quality and of the performance of docking methods.14

Albeit important successes, docking procedures remain ham-

pered by the prediction of false positives and negatives.15

Because of the complexity of the problem, protein–protein dock-

ing is still largely at the theoretical stage and there is still con-

siderable scope for the development of methodology.16

The objective of protein–protein docking is to predict the

three-dimensional arrangement of a protein–protein complex

from the coordinates of its component molecules, being an accu-

rate prediction the one that will point out most of the residue-

residue contacts involved in the target interaction.17–23 Usually,

this involves an exhaustive search of the rotational and transla-

tional space of one protein with respect to the other, resulting in

a six-dimensional search. One of the most important difficulties

of protein docking is that the interface residues of both the re-

ceptor and the ligand may undergo a conformational change on

complex formation. Although often the conformational change is

limited to side-chains, large backbone movements are sometimes

also observed.24 To develop protein–protein docking algorithms,

a perfect test case should be formed by the unbound three-

dimensional structures of both the receptor and the ligand, as

well as by the complex structure that is used only for assessing

the algorithm performance. The PDB contains only a limited

number of such test cases. In Figure 2 we can observe the num-

ber of X-ray structures deposited in the PDB since 1976. As we

can see, 6458 new structures became available last year.

Although every year more and more structures are becoming

available, the Protein–Protein Docking Benchmark,25 consists of

only 124 cases for which high-resolution crystal structures are

available in both the unbound and bound states. The number of

the years between the deposition of the first of the three struc-

Figure 1. X-ray structure of (a) FAB Hyhel63 antibody (PDBID:

1DQQ), (b) HEW lysozyme (PDBID: 3LZT) and (c) of the complex

formed between the two (PDBID: 1DQJ).

Figure 2. Number of X-ray structures deposited in PDB per year.
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tures of the unbound-unbound test case and the last can vary

between 0 and 4 years but unfortunately, values such as 19 are

still found. We can just hope that this situation will be altered in

the next few years. Despite the fact that unbound-unbound con-

stitute a perfect test case, it is also adequate if only one unbound

structure is available, to use an unbound-bound test case, in

which the bound structure of the other molecule is used as it

appears in the complex and the other was crystallized as a free

protein.

Hence, there are three key ingredients in the docking: repre-

sentation of the system, conformational space search, and rank-

ing of potential solutions.21 Although these can vary the pro-

tein–protein docking contains certain problems common to all

procedures: ‘‘searching and scoring.’’16 The first refers to how

accurately the energy function of a given protein–protein com-

plex is described, and the latter is concerned with obtaining the

global minimum energy structure of the complex using that

same energy function.21

Searching

Nowadays, a number of programs perform ‘‘ab initio’’ protein–

protein docking using the same approach: one protein is fixed in

space and the second one is rotated and translated around the

first one. The disadvantage of these methods is that the search

through the entire conformational space of the complex geome-

try makes the calculation expensive, and therefore it is important

to consider the best orientation of their side chains leading to

the minimum energy and the best side chain contacts.4 Thus, a

simple systematic search is usually impracticable even if the

molecules are treated as rigid bodies, in which the degrees of

freedom are limited to translational and rotational ones because

the searching algorithm entails evaluating in the order of billions

(109) of distinct possibilities. More elaborate search techniques

are required and should be both accurate and efficient.16

The docking method is generally based on the idea of com-

plementarity between the interacting molecules, which may be

geometric, electrostatic or hydrophobic, or all three. Geometric

complementarity of the protein surfaces is the filtering criterion

most commonly used to eliminate a large number of solutions

with poor surface matching.16,20 Although usually both proteins

are treated as rigid bodies, since to allow flexibility may be

computationally tricky, many shape-based docking algorithms

have been proposed. These can include other kind of informa-

tion such as hydrophobicity, electrostatics, which are used in

combination with shape matching or as a following filter.26

Thus, the complexity of computational docking increases in the

following order: rigid body docking (extremely basic model that

considers the two proteins as two rigid solid bodies), semiflexi-

ble docking (one of the molecules, typically the smaller ligand,

is the only one considered flexible), flexible docking (both mole-

cules are considered flexible, while obviously the degree of flex-

ibility of either or of both is unavoidably limited or simpli-

fied).21,22 In protein–protein docking different methods have

been used to search the conformational space: matching the

position of surface spheres and surface normals,27 application of

real space,28 or Fourier correlation techniques such as the fast

fourier transform (FFT) algorithm, introduced by Katchalski-

Katzir,29 which evaluates the surface-surface contacts between

the candidate proteins while penalizing for protrusions into the

protein core.29–33 A correlation approach using spherical polar

basis functions is also possible.33

Other algorithms use matching of surface cubes34 or geomet-

ric hashing, i.e. the identification and matching of convex and

concave protein surface regions.35–40 Genetic algorithms,41

Brownian dynamics simulations,42 and combinations of Brown-

ian dynamics and energy minimization43 have also been applied

to deal with the protein docking problem.44

Representation of the System

The basic description of the protein surface is the atomic repre-

sentation of exposed residues, which can be usually achieved by

mathematical models, such as geometrical shape descriptors or a

grid.21 Geometric shape descriptors as sphere representations of

amino acids, negative sphere images of the binding site, molecu-

lar surface cubes, surface normals at sparse critical points, and

cross-sectional slices represented as polygons are widely used.1

One of the most commons ways is to represent the surface by

its geometric features such as the Connolly surface, which con-

sists of the part of the van der Waals surface of the atoms that

is accessible to the probe sphere (contact surface) connected by

a network of convex, concave, and saddle shape surfaces that

smoothes over the crevices and pits between the atoms.21

The geometric descriptors could partly be associated with

further properties of physicochemical meaning or as an alterna-

tive grid representations may be used for the macromolecular

structure. This commonly refers to affinity grids, which are cal-

culated on the basis of force field potentials for van der Waals

and electrostatic interactions.1 The protein interior, the surface

and the outer space can be differentiated by the use of grid-

based molecular representations in combination with Fourier

correlation algorithms. Albeit the representation of the macromo-

lecular target frequently involves similar descriptive method for

the ligand, the ligand may be also treated in a fully atomic

detail. For this it is essential to use the energy grid techniques.

A few alternatives of the grid approach also allow an atomic

representation of the binding site and represent only the bulk of

the receptor protein as a grid.1

Biological Information

Biological information available from experiments or from com-

putational methods on the likely regions or residues involved in

the interaction can confine the search of allowed complex con-

figurations or filter out wrong solutions.21,45 Protein–protein

binding site identification can be achieved by potential hydrogen

bonding groups, enzyme clefts and charged sites on a protein

surface as well as structural comparisons with molecules with

known binding sites. Since binding sites are at least partially

flexible, searches for part-flexible part-rigid sites have also pro-

duced hopeful results. Algorithms that predict the location of

hinges and modes of motions, or those that carry out structural

comparisons of the protein family are also very helpful.21,45
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Most docking studies focus on enzyme-inhibitor complexes

and antibody-antigen complexes since they present significant

differences in the interface residue composition, hydrophobicity

and electrostatics.46–50 For example, the catalytic triad of the

serine proteases (His, Asp, Ser) and the complementarity defin-

ing regions of immunoglobulins are both well characterized.51 In

general, a protease-inhibitor interface is more static and conse-

quently more easily predicted than an antibody-antigen inter-

face.26,51

Hot spots may also be incorporated in the scoring process.

Hot spots have been defined as those sites where alanine muta-

tions cause a significant increase in the binding free energy of at

least 2.0 kcal/mol.48,52,53 To have a strong impact in protein

binding the binding free energy should be higher than 4 kcal/

mol (three orders of magnitude in the binding affinity constant).

However, residues whose mutation results in such a large differ-

ence are quite unusual, and the threshold for the hot spots had

to be lowered to 2 kcal/mol in order to get enough data for sta-

tistical analysis.54,55 Therefore, in a protein–protein interface, a

small subset of the buried amino acids typically contributes to

the majority of binding affinity as determined by the change in

the free energy of binding (DDGbinding) upon mutation of the

residue to an alanine.56,57 It has been observed that hot spots are

preferentially located either on protrusions (‘‘knobs’’) or in

depressions (‘‘holes’’) of the protein surfaces and they are

coupled across the interface in tight fitting regions that exclude

solvent molecules.43 Interestingly, hot spot residues appear to

undergo little conformational changes upon binding, a property

that might facilitate their identification in the unbound state.45

Nevertheless there are no general rules to predict a binding

interface. Therefore, machine learning techniques are being used

to predict automatically interfaces using a combination of vari-

ous factors: e.g. buried surface areas, desolvation and electro-

static interaction energies, hydrophobicity scores, and residue

conservation scores.58–66 A variety of different techniques are

now being explored such as the evolutionary trace approach that

exploits the fact that functionally important residues are often

conserved across species,67 sequence-base approaches that locate

correlated mutations in multiple sequence alignments for pairs

of interacting proteins across different organisms,68 NMR data

such as chemical shift perturbations and residual dipolar cou-

plings are expressed in terms of ambiguous interactions restrains

by the software HADDOCK.4

As domain interactions frequently determine protein function,

an understanding of how domains combine and assemble is

clearly necessary. So, a related problem of considerable impor-

tance is domain docking meaning the prediction of the structure

of a multidomain protein from the structures of its component

domains.45

Flexibility

Structures of protein complexes reveal intricate shape comple-

mentarity, which seemingly confirms the initial lock-and-key

description of protein interaction, first introduced by Fischer in

1894.69 However, this model did not take into account the con-

formational changes that can occur upon binding. Daniel Kosh-

land’s (1958)70 induced fit model admits a certain degree of

plasticity and postulates a mutual adaptation of the two proteins.

A range of studies including molecular, NMR, and single-mole-

cule FRET experiments, have questioned the extent to which

conformational change can be considered induced by the binding

partner. Therefore, a third model, inspired by the MWC mecha-

nism of allosteric regulation (Monod et al., 1965)71 and later

adapted to protein interactions by Kumar et al., a statistical

mechanics emerged recently as a result of view of protein bind-

ing.72–74 This model of conformational selection, postulates that

proteins exist as ensembles of conformations, and that the bind-

ing of the partner to a specific conformation shifts the equilib-

rium toward the specific binding conformation.75 A fourth model

is a hybrid conformer selection/induced fit (CS/IF) model pro-

posed by Grunberg et al.76 where binding is a two-stage process

that begins with conformational selection to form an encounter

complex, followed by an IF or ‘refolding’ step that leads to the

final bound conformation. The different conformations can pres-

ent various degrees of flexibility, which may consist of subtle

side-chain adjustments or may involve domain, tertiary, and/or

secondary structure motions.77

In protein–protein docking, because of the large number of

atoms and degrees of configurational and conformational free-

dom involved, it would be impracticable to treat molecular flexi-

bility in an explicit way with the current computers available.44

This situation contrasts with small ligand-protein docking in

which usually the binding site is already known, and due to the

restricted nature of the problem and the small size of the ligand,

the flexibility can be taken into account later.78 Although easily

treated, flexibility still constitutes a major challenge in protein–

ligand docking due to the computational time needed79 Usually,

protein docking methods are based on rigid- or semirigid-body

treatment of the molecules that reduces the proteic complex to a

nonflexible structure resulting in a radical simplification of the

search process. However, this procedure can lead to wrong solu-

tions especially if the interacting molecular structures acquire

different conformations as they are in the unbound form or com-

plexed to the other protein.80 For example, in the case of anti-

bodies, a diversity of phenomena have been observed, ranging

from adjustments of single amino acid side chains, over loop

rearrangements, to entire domain movements.1 The main defy in

computational protein–protein docking is to merge high-accuracy

energy calculations, speed and sampling power, and the ability

to handle induced conformational changes at the interface.81

Since it is infeasible to explore all possible conformations,

protein flexibility is introduced into docking protocols in a vari-

ety of ways being the most common procedure the use of ‘‘soft’’

scoring functions that accommodate flexibility while others ex-

plicitly include domain hinging movements or side-chain flexi-

bility in the docking.3 Both backbone and side-chain flexibility

are also being introduced using molecular dynamics (MD) in

combination with some form of rigid-body docking, either

before or after the MD simulations.3,15 Thus, as it is not feasible

to execute extensive conformational searches during docking,

unless the binding site is known, it has been generally adopted

the two-stage approach. Initially the receptor and ligand are

treated as rigid bodies and a fully exploration of the six-dimen-

sional rotational and translational degrees of freedom is made.

At a second stage, a much smaller number of structures acquired
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in the initial stage are refined and reranked by more scrupulous

energy functions that include small backbone and side-chain

movements as well as rigid-body adjustments to take into

account conformational changes.82 As it is difficult to perform

the three at the same time they can be done sequentially.83 A

number of algorithms have been developed for this purpose. We

will focus in some of the most commonly used.

Soft Docking

In the majority of the known protein complexes, the complex

structure of the proteins is only very vaguely changed, compared

to the free forms, with most of the conformational changes con-

fined to the side chain atoms of surface amino acids. Therefore,

with slight modifications of the basic rigid body procedure,

some techniques may tolerate a limited degree of molecular flex-

ibility by using a ‘‘soft’’ representation of the molecular sur-

face.84–89 The soft docking concept, originally proposed by Jiang

and Kim, describes the molecular surface and volume as a cube

representation, which implies implicit conformational changes

by way of size/shape complementarity, close packing and liberal

steric overlap.84 Ritchie and Kemp introduced a ‘soft’ model of

electrostatic complementarity in the algorithm.89 Palma et al.

proposed a surface implicit method in which the surface is rep-

resented by values 0 and 1 on two grids, the surface and core

grids.31,88 This digitization introduces the first level of ‘softness’

in the algorithm.80,90

Therefore, soft docking methods generally use rigid-body

docking and smooth the protein surfaces or allow some degree

of interpenetration.79 They only deal with side-chain flexibility

and can be divided into brute force techniques,80,84 randomized

methods7,91 and shape complementarity methods.92

Side-Chain Flexibility

Side-chain flexibility can permit in favorable cases an efficient

docking if some interfacial side-chains are in incorrect confor-

mations.8 Totrov et al., 1994 published one of the first success-

ful ab initio predictions of a complex that combined pseudo

Brownian Monte Carlo minimization with a biased-probability

global side-chain placement procedure. They showed that side-

chain optimization was fundamental for discrimination of near-

native conformations from false positives.93,94 The majority of

the methods adjust side chain conformations explicitly during a

refinement stage following the rigid-body search, which is char-

acteristically performed only for a selected set of protein side

chains close to the putative binding site and side chain confor-

mations are represented as a discrete set of rotamers from

libraries. These libraries are derived from statistical analysis of

side-chain conformations in known high-resolution protein struc-

tures.83 Originally it was proposed a method that uses pre-generated

side-chain rotamer libraries, which are subjected to optimization

during a ligand docking procedure via the dead-end elimination

algorithm, and subsequently scored in order to rank the lowest

energy combination of side-chain and ligand conformers.95 Side-

chain flexibility was introduced in the Mining Minima optimizer,

which allows conformations of user-selected side-chains in the

active site to be optimized along with the conformation and

position of the ligand.96,97 Some algorithms are also utilized

such as SOFTSPOTS that makes use of a knowledge-based

function, which identifies active site residues most likely to

undergo conformational change upon ligand binding. The associ-

ated PLASTIC algorithm generates the side-chain rotamers, or a

minimal conformational manifold, prior to docking calcula-

tions.8,77

All the amino acids do not show the same degree of freedom.

Amongst the protein complexes arginine, lysine, glutamate, and

metionine preset the highest frequency and amplitude of move-

ments between the structures of free and co-crystallized pro-

teins.80 In contrast, many of the smaller polar or charged resi-

dues, such as asparagine, aspartate and histidine, and the large

aromatics, phenylalanine, tyrosine and tryptophan, are markedly

inflexible. At the binding interface, the degree of flexibility fol-

lows the order lysine [ arginine [ methionine [ glutamine [
glutamate [ isoleucine [ leucine [ aspargine [ threonine [
tyrosine [ serine [ histidine [ aspartate [ cysteine [ trypto-

phane [ phenylalanine. Thus, the lysine side chains flex 25

times more often than do phenylalanine side chains.98–100

Backbone Flexibility

As already mention, a comparison of bound and unbound struc-

tures can reveal significant changes in backbone conformation

upon binding, which represents the greatest challenge to predic-

tive protein docking. The main challenge is the incorporation of

full backbone flexibility into protein-protein docking simulations,

due to the enormous complexity of size and degrees of freedom

of the conformational space of the backbone. Backbone flexibil-

ity can be treated at different stages of the docking procedure

and in different combinations.83 Sometimes, ensembles of con-

formations or backbone minimization are obtained prior to the

docking procedure because backbone deformation is more im-

portant to the global structure than side-chain deformation and

because side-chain conformations may depend of the backbone

torsional angles. As reviewed by Andrusier et al., 200883 the

flexible docking can be divided into three parts: (i) analysis of

flexibility of proteins by ensemble analysis, rigidity theory,

Gaussian network model, normal mode analysis, MD or essential

dynamics; (ii) flexible docking in which subdomains can be

docked separately and ensembles can be generated and docked

using cross-docking or the Mean Field Approach; (iii) refine-

ment of backbone (by normal modes minimization), side-chains

(mean field approach, iterative elimination, graph theory algo-

rithms)and rigid-body orientation (by a variety of minimization

methods).

The various biophysical models suggest distinct conforma-

tional sampling strategies in flexible protein docking. For exam-

ple, the key-lock model successful at predicting complexes for

proteins that undergo minimal backbone conformational change

upon binding, is the underlying idea for the original grid-based

and FFT techniques, and is included, among others, in ZDOCK/

RDOCK, ClusPro and RosettaDock.101 In Koshland’s induced fit

model the backbone conformational space must be sampled ex-

plicitly during docking in response to local energetics of the

interface, which can be achieved by MD, energy minimization,

or gradient-based methods in MC minimization. In the confor-
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mational selection model for docking, backbone flexibility is

modeled implicitly as a pregenerated ensemble of rigid struc-

tures generated from the unbound structure. The ensembles can

be achieved by using different solved three-dimensional struc-

tures from X-ray or NMR studies of diverse conformations of

the same protein. From a computational point of view, depend-

ing on the time scales and the energy barrier heights, MD and

Monte Carlo simulations that generate full receptor ensembles

have also been used to incorporate protein flexibility in dock-

ing.19,76 However, MD can be used only to model small-scale

movements, in a nanosecond time scale, and sometimes the sim-

ulations can result in unrealistically docked substrates.67,83 This

can be overcome by restricting the degrees of freedom to the

torsional space and by using simulated annealing methods and

scaling/rescaling ligand-receptor interaction potential methods.

Multiple-copy simultaneous search methods can help to speed

up energy-based searches because they use numerous ligand

copies, which are transparent to each other but subjected to the

full influence of the protein. The docking algorithm based on the

hybrid CS/IF model would have combined both ensemble dock-

ing and explicit backbone flexibility during docking. For exam-

ple, HADDOCK combines both implicit and explicit backbone

flexibilities while incorporating biochemical information, and it

is capable of using ensembles from a wide variety of sources

including MD, homology modeling, or NMR structures.4

Normal-mode analysis can also be used to calculate the nor-

mal modes (a set of basis vectors) that are related with the flexi-

bility of the protein and therefore may be used to modeled large

global motions.101 Two of the most common models used for

normal modes calculations are the Anisotropic Network Model

and the Gaussian Network Model. Dobbins et al. used normal

modes, which are related to the thermal motion of individual

proteins, to gain insights into the nature of conformational

changes in protein–protein interactions by identifying the mobile

regions and reproducing the directions of conformational

changes. Only backbone motion is studied because the model

used to calculate the normal modes considers Ca atoms only.75

Principal component analysis of MD trajectories is also being

used to generate conformations for docking by capturing the

main flexible degrees of freedom of a protein.102

In life we can find multiple domain proteins, which are pre-

dominant in eukaryotic proteomes and have been shown to play

a critical role in their structure and function.103–105 Therefore, it

is crucial to have the right computational tools to construct these

complex macromolecular structures even if biophysical data is

not available. Multimeric docking algorithms are being usually

developed by several groups (Table 5) in which some degree of

symmetry is applied to candidate dimmers, rejecting those that

produce intolerable steric clashes.23,106–110 During complex for-

mation, flexible segments that separate domains of multidomain

proteins or subdomains of proteins can move—hinge-bending

motions. There are some methods capable of dealing with this

type of flexibility. For example, the FlexDock algorithm from

the group that developed PatchDock, is initiated by the auto-

matic detection of the hinges by the HingeProt algorithm, an

NMA-based approach for the identification of hinge regions and

rigid parts given a single protein structure.111 Eisenstein et al.

also incorporate domain movement in their software Molfit in

which individual domains of the molecules are treated as soft

rigid objects in multibody, multistage docking protocols.112

Unfortunately, even with some recent improvements, the

treatment of flexibility is still a major problem for the docking

community as it can be seen by the CAPRI results, where in

cases with significant conformational changes the predictions

were disappointing.

Modeling Interfacial Water

Even though an O-ring hypothesis113 states that the majority of

the interfaces are generally occluded from the solvent, still

many interfaces present bound water molecules. Therefore,

although solvation and desolvation effects are crucially impor-

tant in the thermodynamics of complex formation, most docking

algorithms neglect to take into account the specific interactions

with water molecules that occur in some interfaces. Recently,

the HADDOCK software has been introducing explicit solvent

in the calculation in which the starting structure is solvated with

a 5.5 Å solvent shell in a short MD run. This protocol is a very

promising methodology that result in considerably better scores

and RMS deviations than unsolvated docking for the majority of

the 10 complexes studied, which included examples of both wet

and dry interfaces.4

Scoring

Generally speaking, the protein–protein docking problem can be

classified as one of the global optimization problems, since its

key principle is to evaluate the energies of protein–protein dock-

ing poses so as to identify the pose with the lowest energy as

the predicted binding mode.20 So, the fundamental point of any

docking method is to be computationally efficient, having a

scoring scheme able of evaluating a huge number of solutions

and discriminating the correct binding modes from the decoy

complex structures.21 With the development of the Fourier corre-

lation approach,29 it became computationally practicable to gen-

erate and evaluate billions of possible docked conformations by

simple scoring functions.

The geometry of the complex corresponding to the lowest

free energy of binding must be found, which it is not easy to do

considering the macromolecular nature of the protein, with its

high dimensionality of the coordinate space and considerable

complexity of the energetics governing the interaction.1 In the

most favorable case, the best prediction is reasonably close to

the crystal structure, but none of the docking procedures

achieves this on all test complexes.13 As docking methods, force

fields, and degrees of refinement vary widely, the goal of having

a single scoring function for every model regardless of its source

might not be easily accomplished.114–117 This way, the docking

process should be able to discriminate between native-like and

wrong docked structures within a reasonable computation

time.21,115

Most of the docking algorithms developed so far use the

extent of geometric complementarity of the protein surfaces as

an initial filter to eliminate a large number of solutions with

poor surface matching. It is, however, usually recognized that a
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criterion based exclusively on geometric complementarity is far-

off from being enough to distinguish among native and non-

native docked geometries, except for a very a small number of

cases.28 Numerous criteria have been implemented with different

levels of success: steric complementarity of the shapes of the

interaction sites, electrostatic interactions, and hydrogen bond-

ing. Furthermore, exclusion of the solvent from the interface and

the associated solvent entropy change play an important role in

stabilization of protein interactions, and can be estimated from

empirical potentials or data base derived functions.2,13 These

scoring parameters can be divided into two groups: collective

parameters (refer to a property that characterizes the entire mol-

ecule) and individual parameters (refers to a specific atom or

residue).18 However, despite the method used for predicting the

most favorable interaction mode, none of the individual ener-

getic contributions that have been evaluated proves to be suffi-

cient, per se, to distinguish between native and misdocked struc-

tures for all tested complexes.18 The most natural scoring

scheme, the free energy of binding DGbinding, is not easily acces-

sible but other scoring functions that model DGbinding as accu-

rately as possible, i.e. provide good correlations with experimen-

tal binding affinities, must be used.16 Some scoring functions

involve solvation potentials, empirical atom-atom or residue-res-

idue contact energies, and continuum electrostatics. However,

the empirical free energy and the molecular mechanics potential

alone cannot provide a valid discrimination of the true solution

because molecular mechanics potential is just part of the binding

free energy, and the entropy is not taken into account.

MMPBSA (Molecular Mechanics Poisson Boltzmann Surface

Area), or the free energy perturbation method may thus be used

to discriminate the correct docking structure.20 Hence, scoring

functions can be roughly classified into three distinct catego-

ries: knowledge-based, empirical and forcefield-based.77

Docking algorithms can be classified by the phase of scoring

in the algorithm flow into two groups: integrated and edge

functions. In integrated algorithms, scoring is integrated into

the search stage and filter emerging solutions. In edge algo-

rithms, scoring is applied at the end of the search stage. The

major difference is that the scoring function forms part of the

design of the solutions in integrated algorithms but not in

edge algorithms.21

The final score can be determined with regard to other solu-

tions, a known structure, or the solution itself. A solution with a

low rmsd from the complex is considered to be the correct one.

Usually, other solutions that differ only slightly from it should

be found, and therefore, a comparison of each solution with

other solutions, by a direct comparison or by clustering (dense

populations of predicted conformations), is beneficial. In princi-

ple, the cluster size may also be used as a parameter in a scoring

function.21 Therefore, scoring functions can include: heuristic

scores based on residue contacts, shape complementarity of mo-

lecular surfaces (‘‘stereochemistry’’), free energies, phylogenetic

desirability of the interacting regions, and clustering coefficients.

It is usual to combine one or more categories above in a

weighted sum whose weights are optimized on cases from the

benchmark. The benchmark cases used to optimize the weights

must not overlap with the cases used to make the final test of

the score to avoid bias.

Recent developments in scoring functions have focused on

the estimates of geometric and energetic complementarity during

rigid-body search using terms derived from statistical analysis of

known interfaces or Machine Learning techniques,117 or more

sophisticated force fields used in subsequent refinement steps.118

Bernauer et al., 2007 developed a scoring function based on a

Voronoi tessellation of the protein three-dimensional structures,

which provides a convenient low-resolution description of pro-

tein structure and protein–protein interfaces.119 Using the

ROGER statistical learning procedure, they ranked the models

obtained by two different docking algorithms, improving in

almost all cases the rank of native-like solutions.119 Neverthe-

less, scoring continues to be one of the biggest challenges in the

docking procedure.

Critical Assessment of Prediction of Interactions

The international Critical Assessment of Prediction of Interac-

tions (CAPRI) experiment was designed to evaluate current

computational approaches that address protein–protein dock-

ing.120 The CAPRI is a community-wide experiment designed

according to the model of the Critical Assessment of Techniques

for Protein Structure Prediction (CASP).14 It was designed in

June 2001 at the Conference on Modeling Protein Interactions in

Genomes organized in Charleston, SC, by Ilya Vakser (Medical

University of South Carolina) and Sandor Vajda (Boston Univer-

sity). Unlike CASP, which has a fixed time schedule and targets

are single proteins, CAPRI targets are protein–protein complexes

and it is data-driven, meaning that starts whenever an experi-

mentalist offers an adequate target and ends 6–8 weeks later

with the submission of predicted structures.14,121,122 Computa-

tional researchers are given the three-dimensional coordinates of

the unbound structures before the co-crystallized complexes are

published. The researchers are then given a few weeks to dock

the two structures together, and can use biological information

and literature searches. In just a couple of years, CAPRI chal-

lenge has provided the docking community with a unique blind

setting of simultaneously assessing all docking algorithms, and

has led to significant advances in the field.123,124

Therefore, the CAPRI experiment concentrates on a relatively

small number of prediction targets, with unknown three-dimen-

sional structures and all the groups participating in the experi-

ment study the same targets. This way, comparison of the per-

formance of different algorithms becomes easier because the

selection of targets, which may be harder or easier for predic-

tion, is eliminated and the bias, which is naturally introduced

when the predictor knows the expected results is also eradi-

cated.9 One of the most imperative ambitions of CAPRI is to

comprehend how well present methods can unravel unbound-

unbound docking problems, which proved to be far from triv-

ial.125 The participants can use any biochemical or structural in-

formation available in the literature, which can facilitate the

search toward correct solutions even for targets that would be

very difficult to predict without such additional information.125

The CAPRI protein–protein targets present in Table 1 pro-

vided so far a good combination of problems with diverse levels

of complexity. T16 and T18 had to be cancelled, and predictions
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of T15 were interrupted prematurely, as the corresponding ex-

perimental structure was published by the authors before the

deadline for submitting the predictions. T22 and T23 were also

canceled except for the docking servers. In order of preference,

the ideal would be to start with the coordinates of two unbound

molecules or with one bound and one unbound set of coordi-

nates, and finally if only the bound coordinates are available, to

start with the coordinates of the backbone.125 In CAPRI the

unbound-unbound targets appear to be intrinsically more difficult

than the bound-unbound targets because, as already mentioned,

molecules suffer conformational changes from the unbound to

the bound structures. There are three types of conformational

changes: involving small-scale, fast motions, involving large-

scale, slow domain motions, and the third outcoming of protein

‘‘disorder.’’ In such cases, the native state has a small hydropho-

bic core, or the molecule (or its disordered domain) contains

uncompensated buried charges.125

To assess the quality of the models, after a least-square

superimposition of the receptor in the model and target, three

aspects should be analyzed: the RMS distance Lrms between Ca

atoms of the ligand (L) in the model and target, as well as the

rotation angle yL and translation dL needed to further superim-

pose L; the interface RMS distance Irms, calculated with the

Ca’s of the epitopes only; and the fraction of native contacts fnc
5 nc/Nc, where Nc is the number of residue pairs in contact in

the target, and nc the number of those native contacts that are

present in the model. These parameters Irms, Lrms, and fnc are

then combined to rank models. In models of the ‘‘high-quality’’

and ‘‘medium’’ categories, fnc is higher than 0.3, Irms is lower

than 2 Å, Lrms is lower than 5.0 Å and the misorientation is

lower than 208 depending on the shape and size of the mole-

cules and the interface. Models with 10–30% of the native con-

tact pairs and Irms between 2 Å and 4 Å, are placed in the ‘‘ac-

ceptable’’ category. Although their geometry is poor, they should

still be useful for site-directed mutagenesis and other experi-

ments, because a large part of the epitopes must be correctly

identified to yield fnc � 0.1.12 Table 2 summarizes the criteria

available for ranking the CAPRI predictions.13

Vajda et al.125 have demonstrated that the best predictors of

success in docking are the conformational change upon binding,

Table 1. CAPRI Protein–Protein Targets.

Round Target Complex Type of Complex Reference

1 T01 HPr kinase/HPr Unbound-unbound 126

T02 Rotavirus VP6/Fab Unbound-bound 127

T03 Flu hemagglutinin/Fab Unbound-bound 128

2 T04 Amylase/camel VHH Unbound-bound 129

T05 Amylase/camel VHH Unbound-bound 129

T06 Amylase/camel VHH Unbound-bound 129

T07 Superantigen/TCRb Unbound-unbound 130

3 T08 Nidogen/laminin Unbound-bound 131

T09 LicT dimer Unbound-unbound 132

4 T10 TBE virus E trimer Unbound-unbound 133

T11 Cohesin/dockerin (unbound) Unbound-homology model 134

T12 Cohesin/dockerin (bound) Unbound-bound 134

T13 SAG1/Fab Unbound-bound 135

5 T14 Phosphatase 1d/MYPTI Homology model-bound 136

T18 Xylanase/TAXI Unbound-bound 137

T19 Ovine prion/Fab Homology model-bound 138

6 T20 PrmC/RF1 Unbound-homology model 139

7 T21 Orc1/Sir1 Unbound-unbound 140

8 T22 U5-15K/U5-52K Unbound-unbound 141

T23 GBP1 GTPase domain Homodimer 142

9 T24 Arf1-GTP/ArfBD (unbound) Unbound-homology model 143

T25 Arf1-GTP/ArfBD (bound) Unbound-bound 143

10 T26 TolB/Pal Unbound-unbound 144

11 T27 E2-25KDA/UBC9 Unbound-unbound 145

12 T28 NEDD4L dimer Homology model 146

13 T29 TRM8-TRM82 Homology model 147

14 T30 Rnd1-GTP/RBD dimer Unbound/unbound 148

15 T31 Rac1-GTP/RBD monomer Unbound/unbound 149

T32 Subtilisin Savinase/Alpha-amylase Unbound/unbound 150

T33 Rlma2 methyltransferase/RNA complex Homology model/unbound

T34 Rlma2 methyltransferase /RNA complex Homology model/bound

T35 Pair of covalently linked modules: CBM22 and GH10 Homology model/homology model

T36 Pair of covalently linked modules: CBM22 and GH10 Homology model/bound
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the change in the solvent accessible surface area, and the hydro-

phobicity of the interface. They have calculated the change in the

solvent accessible surface area (DASA) by DASA 5 ASAcomplex2
ASAreceptor2ASAligand, where ASA denotes the solvent acc-

essible surface area of the proteins in the CAPRI contest. They

have measured also the hydrophobicity of the interface as the

free energy of desolvation upon association DGdes, calculated

using the atomic contact potential (ACP),150 an atom-level

extension of the Miyazawa and Jernigan potential151 as well as

the Ca RMSD, the a-carbon root mean square deviation between

free and bound proteins. With this study they have divided the

protein–protein complexes in five different types present in

Table 3.125

Contrasting with small molecule docking, which has become

a custom computational instrument in rational drug design, pro-

tein–protein docking has remained mainly an academic exer-

cise.152 A communitywide blind prediction helps to prove the

value of the prediction methods and assess their reliability,

before transferring the technology to a wider circle of users.13

The CAPRI challenge expose the work of the structural biolo-

gists who submit targets and offers the opportunity to evaluate

and compare different methods and protocols for protein–protein

docking. The results of the CAPRI rounds have shown that there

is a single method capable of docking each and every complex,

although acceptable predictions are made for most com-

plexes.9,153

The Software

The comparison of different docking programs and to rank their

relative performance is very important but extremely difficult

because most investigators have access to merely a partial num-

ber of methods for evaluation, the test cases tend to be limited

in the number and type of targets evaluated, and each algorithm

merges a particular search strategy and a particular scoring func-

tion.154,155 The algorithms mostly differ in the method for

searching the six-dimensional-transformation space that they

apply and in their evaluation of the resolved complexes, and are

computationally too expensive for large-scale experiments.23 As

different algorithms may perform better for different types of

complexes, a methodical exploration of all algorithms may

reveal directions of enhancement.51 It is essential to stress that

recent progress in docking algorithms and computer hardware

makes it possible to implement such procedures as automated

Web servers, which greatly improves the utility of the docking

approaches in the biological community.156 In this part of our

review we will focus in some softwares most frequently used to

perform protein–protein docking.

Attract

Attract is based on energy minimization of the binding proteins

and a reduced protein model (consisting of up to three pseudoa-

toms per amino acid residue) to allow systematic docking with

several thousands of initial configurations.8 The interaction

between amino acids in the reduced model considers dissimilar-

ities in physicochemical character of the side-chains such that

complex formation is driven not only by surface complementar-

ity but also by the physicochemical character of the interacting

protein surfaces. The use of a reduced model allows a much

faster calculation of protein–protein interactions, the number of

distinct docking minima is much smaller compared with an

atomic detail representation of the protein surfaces. During

docking, both partners are considered as rigid, and a systematic

docking process consisting of a series of minimizations is per-

formed. The first three minimizations include a harmonic dis-

tance restraint between the two partners in order to generate an

initial tight complex, followed by free minimization towards the

closest minimum configuration.44,157

Flexibility of the partner structures is taken into account by

representing flexible surface side-chains as multiple conforma-

tional copies.8,44,157,158 Experimental data and knowledge of hot

spots can be taken into account at various stages of the docking

procedure.159 Usually the presence of flexible surface loops,

which must adapt to the steric and electrostatic properties of a

partner, presents a major obstacle. Attract allows large loop

movements during a systematic exploration of the possible

arrangements of the two partners in terms of position and rota-

tion by taking into account an ensemble of possible loop confor-

mations by a multicopy representation within a reduced protein

model.122 Thus, Attract is based on a reduced protein model and

energy minimization of docked complexes. The program

Table 2. Criteria for Ranking CAPRI Predictions.

Rank fnc Lrms Or Irms

High �0.5 �1.0 Or �1.0

Medium �0.3 1.0–5.0 Or 1.0–2.0

Acceptable �0.1 5.0–10.0 Or 2.0–4.0

Incorrect \0.1

Table 3. Classification of Proteic Complexes on the Basis of Docking Difficulty.

Type DASA (Å2) DGdes (kcal/mol) Ca RMSD Expected difficulty of docking

I 1400–2000 \24.0 Easy, unless key side-chains are in the wrong conformations

II 2000–3000 \2.0 Moderated difficulty

III 1400–2000 [24.0 Very difficult almost unpredictable

IV \1400 Very difficult

V [2500 [2.0 Rigid-body methods always seem to fail
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includes side chain flexibility (by a multicopy approach) and

global flexibility using normal mode variables during systematic

docking runs (in contrast to most programs that include flexibil-

ity only in a postprocessing or refinement step of rigidly docked

complexes).

BIGGER

BIGGER is a software that incorporates a soft-docking algorithm

to predict three-dimensional-structures of proteic complexes.

First a three-dimensional matrix (volume matrix) composed of

small cubic cells of 1 Å size, which represents the complex

shape of each molecule is generated. Then, a grid-like search

algorithm is used to systematically search the binding space of

both molecules, and a structure is selected on the basis of the

geometric complementarity and amino acid pairwise affinities

between the two molecular surfaces. No information about the

binding site is used, and so all the proteic surfaces are subjected

to a detailed search. The scoring function comprise terms related

with the geometric complementarity of the surfaces, explicit

electrostatic interactions, desolvation energy, and pairwise pro-

pensities of the amino acid side chains to contact across the mo-

lecular interface.28,56

ClusPro

The web server, ClusPro,160 includes a rigid-body search, a rapid

estimation of the knowledge-based potentials, such as the

Atomic Contact Potential and electrostatic energies for filtering,

a ranking based on the clustering properties of low free energy

complexes, and a brief side-chain minimization using CHARMm

to remove clashes from the docked interface. The current ver-

sion includes two FFT-based docking programs, DOT161 and

ZDOCK82 as its front-end performing a rigid-body search.116

DOT runs retain 20,000 docked conformations, while ZDOCK

runs retained 2000 structures. Both DOT and ZDOCK use FFT

but DOT uses a shape complementarity score, whereas ZDOCK

scoring function includes a combination of shape complementar-

ity, Coulombic electrostatics, and desolvation free energy based

on the Zhang et al.150,162 atomic contact potential.58,123 Through

the introduction of the Fourier correlation method, it is now pos-

sible to evaluate billions of putative complex structures.164 The

algorithm filters the docked conformations by selecting the ones

with favorable desolvation and electrostatics properties, clusters

the retained structures using a hierarchical pairwise RMSD algo-

rithm, and selects the centers of the most populated clusters as

predictions of the unknown complex. The free energy filters

select complexes with lowest desolvation and electrostatic ener-

gies.116,124 It is possible to prohibit binding to certain regions

as well as select residues that should be close in the proteic

complex.163

The server has also been further developed to allow modeling

of multimeric assemblies. Given the number of monomers form-

ing a multimeric complex and the structure of one monomer, the

method predicts the symmetry and structure of the complex. The

method was designed to scan all possible interactions, and select

the models with the broadest free energy funnels that also satisfy

the symmetry constraints without steric overlaps.123

FastContact’ is a server (http://structure.pitt.edu/servers/fast-

contact/) that estimates the direct electrostatic and desolvation

component of the free energy, based on a classic distance de-

pendent dielectric and an empirical contact potential for the des-

olvation contribution. This server was used in conjugation with

Cluspro in the latest targets of the CAPRI contest, and discrimi-

nated near-native predictions from docked conformations.164

Recently, some of the original authors of this software devel-

oped a new docking program PIPER based on the FFT correla-

tion approach. The PIPER program was used with a new class

of structure-based potentials called DARS (Decoys As the Refer-

ence State),78 based on the inverse Boltzmann approach. The

structures of the top-ranked clusters are further refined using

SDU, a stochastic global optimization method, which exploits

and utilizes the funnel-like behavior of the free energy function

DG in the regions of the conformational space defined by sepa-

rate clusters.165,166

3D-Dock

The 3D-Dock algorithm167 is initiated by a global scan of trans-

lational and rotational space of possible positions of the two

binding partners, limited by surface complementarity and an

electrostatic filter using a standard FFT to search for putative

conformations.168–170 The scoring criterion is based on shape

complementarity but also incorporates an approximate electro-

statics scoring. The protein is described at the atomic level by

electrostatic and van der Waals interactions. Multiple copy rep-

resentation according to a rotamer library on a fixed peptide

backbone is used to model side-chain conformations. The bio-

logical filter screens the conformational space of the complexes

by restricting the distance between different groups of residue of

the two interfaces.3,170,171 An energy minimization is made to

remove steric clashes on the side-chains of the interface, and

thus it models the effects of side-chain conformational change

and the rigid-body movement of the interacting proteins during

refinement. Thus, the program uses a rotamer library to reposi-

tion the side-chains; it refines the position of the backbone in a

deterministic manner toward local energy minima, and provides

an interaction energy value that we use as a score to rank the

putative conformations.3,172 At the end, rigid-body energy mini-

mization is performed to relax the interface.3 Use of biological

information as distance constraints to filter complexes appears to

be essential generating three-dimensional-Dock predictions with

an RMSD lower than 1 Å.168

Recently, Sternberg et al. have created a server: three-dimen-

sional-Garden, Global And Restrained Docking Exploration

Nexus (http://www.sbg.bio.ic.ac.uk/�3dgarden), which uses an

ensemble generation based on the marching cubes algorithm173

with a conformational refinement engine to form a comprehen-

sive framework for flexible docking. Three-dimensional-Gar-

den’s scoring procedure is more basic than most other docking

protocols since it includes no clustering step and no explicit sol-

vation term.174

Bates et al. uses a modified version of the FT_Dock (a com-

ponent of the three-dimensional-Dock). The main difference is

the sampling process that also includes MD, which allows the

consideration of backbone flexibility. It also provides a side-
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chain multicopy flexible refinement force field, and it uses an

orientation filter to treat oligomerization symmetry.3

DOT

DOT performs an FFT systematic search of basically rigid mole-

cules, over usually a 1 Å translation step and a 48 rotation step.

It can permit a limited amount of presumed flexibility by allow-

ing a certain number of atoms to collide in a particular run.

Symmetry can be treated by reducing the conformational search,

which can be achieved by limiting the set of rotations to be con-

sistent with such symmetry. The DOT energy model consists of

an electrostatic component and a nonbonded contact term, but

not explicit desolvation. Thus, DOT evaluates the energy of

interaction for many orientations of the moving molecule by

summing the Boltzmann factor and the van der Waals contribu-

tion over all rotations at each grid point.161,175

The DOT authors participated in the CAPRI contest with a

methodology that involves starting from 100,000 DOT results, a

geometric complementarity analysis performed for the top 1500

DOT results by using the FADE program, proximity analysis by

a distance cutoff filter and FADE to determine the amount of

contact and shape complementarity between regions of interest,

and cluster analysis performed on the top 1000 results returned

by DOT. Finally manual inspection using computer graphics or

three-dimensional printing excluded those that were clearly not

possible due to unfavorable charge-charge interactions. Those

with more favorable interactions, including charge-charge,

hydrogen bonding, nonpolar-nonpolar are then selected.161,176,177

Gramm-X

The Gramm-X implements a rigid-body fine-grid FFT search

with a smoothed Lennard-Jones potential to accommodate con-

formational changes, followed by local minimization and rescor-

ing. The resulting local minima are re-ranked according to the

weighted sum of Lennard-Jones potential, pairwise residue-resi-

due statistical preferences, cluster occupancy, and the degree of

the evolutionary conservation of the predicted interface.156 Flex-

ibility was not taken into account in the CAPRI contest. To take

into account the degree of change at the interface area, bound

conformations of the most flexible interface side chains were

substituted into the unbound structures from the benchmark

complexes. It was demonstrated that the knowledge of the con-

formational change upon binding of only three critical interface

side chains per complex would provide a 40% improvement of

the benchmarking results, and beyond that other factors such as

backbone changes and force field accuracy would dominate.179

In predictive docking experiments the interface side-chains and

the extent of their conformational change upon binding are not

know but could be estimated by rotamer library analysis or force

field simulation (Monte Carlo or MD). Biological information

such as interacting residue data from mutational studies and gen-

eral knowledge about the interaction being studied is not used

during the docking algorithm. Thus, the proteic complex should

be manually inspected.178 Dockground179 project (http://dockground.

bioinformatics.ku.edu) focuses on generation of comprehensive

and sophisticated datasets for developing and validating new

docking methodologies. One of the key aspects are unbound (ex-

perimental and simulated) protein structures, corresponding to

complexes of known structure, which are much more limited

than those for the bound sets, because only a limited number of

proteins are crystallized in both bound and unbound form.181

HADDOCK

HADDOCK starts with a randomization of orientations and rigid

body energy minimization, followed by semirigid simulated

annealing in torsion angle space, and final refinement in Carte-

sian space with explicit solvent. During the last two phases, the

amino acids at the interface (side chains and backbone) are

allowed to move to optimize the interface packing.4 Biochemical

and/or biophysical interaction data such as chemical shift pertur-

bation data resulting from NMR titration experiments or muta-

genesis data information about protein-protein interface residues

is often used to reduce the conformational search space or filter

the solutions. One of the most fundamental differences in com-

parison with other algorithms is that HADDOCK translates in-

formation about the interface into highly ambiguous inter-

molecular distance restraints used to directly drive the docking

process.4,181

Flexibility is introduced at several levels in the algorithm: by

docking from ensembles of structures and taking all possible

pairwise combinations; by introduction of flexibility in the side

chain at the interface; and by allowing both side-chain and back-

bone flexibility in the final refinement stage. Flexibility also con-

siderably improved the ranking of structures. In addition to the

explicit inclusion of flexibility in the refinement stage, it is also

implicitly included in the rigid-body docking stage by starting

from ensembles of structures obtained from short MD simula-

tions in explicit solvent.182 The final structures are clustered

using the pairwise backbone RMSD at the interface and ana-

lyzed according to their average interaction energies (sum of

electrostatic, van der Waals and Ambiguous Interaction

Restraints that are derived from any kind of experimental infor-

mation available concerning the residues involved in the inter-

molecular interaction) and their average buried surface area.4

Recently, explicit inclusion of interfacial water was incorporated

in the docking protocol and incorporated in the latest CAPRI

predictions.183 A consistent improvement is observed for Fnat

after water refinement, casing an aceeptable prediciton to

become a medium prediciton.184 Recently this group lauched a

new web server that can found at http://haddock.chem.uu.nl/

Haddock/haddockserver-file.php.

ICM-DISCO

The ICM-DISCO protein–protein docking method is a direct

stochastic global energy optimization from multiple starting

positions of the ligand, which shows the ability to distinguish

near-native rigid-body geometries in a relatively low number of

alternative docking poses.6,185 The rigid-body uses ICM pseudo-

Brownian185 optimization of binding potentials precalculated on

a three-dimensional grid: van der Waals potential, an electro-

static potential corrected for the solvation effect, the hydrogen-

bonding potential, and a hydrophobicity potential. The solvation
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energy based on atomic solvent-accessible surfaces was added to

the total energy to re-evaluate the docking solutions obtained

from unbound subunits. It is followed by a refinement of the sol-

utions and final scoring, which includes specific filtering crite-

rion on a case-by-case basis. A new desolvation descriptor,

based on atomic solvation parameters (ASPs) derived from octa-

nol-water transfer experiments, was optimized for rigid-body

docking. Symmetry is imposed as an intrinsic feature of the

model, so that only symmetric configurations can be realized

throughout the course of the docking procedure.6 The algorithm

handles the induced changes of surface side-chains but is less

successful if the backbone undergoes large scale rearrange-

ments.185,186 Recently some of the developers of ICM-DISCO

created a new protocol called pyDock, based on FFT generation

of rigid-body docking solutions, with a scoring function consist-

ing on electrostatics and desolvation energy terms.187

Molfit

Molfit188 starts by a weighted-geometric search, in which con-

tacts involving specified parts of the surfaces of either one or

both molecules are up-weighted or down-weighted, and in which

the whole rotation-translation space is scanned (global scan) or a

part of it (partial scan). The molecules are represented by three-

dimensional grids that carry information on the shape and the

chemical character of the molecular surfaces. The grids are cor-

related using FFT.189 The weights are based on available struc-

tural and biochemical data or on sequence analyses. In addition,

a geometric scan should be performed to get an estimate of the

outcome of weighing. The solutions in each scan are sorted by

their complementarity scores.72 The top ranking solutions from

each scan are filtered, clustered, and manually analyzed. The

manual viewing serves to eliminate severe clashes and to esti-

mate qualitatively the possibility of ion pair and hydrogen bond

formation across the interface. At the end of the procedure, the

best solutions are refined by small rigid body rotations of 28
around the position obtained in the scan.72,188–190

PatchDock

PatchDock23,191 is a geometry-based molecular docking algo-

rithm, which divides the Connolly dot surface representation of

the molecules into concave, convex and flat patches and matches

complementary patches in order to generate candidate transfor-

mations. Small-scale flexibility is taken into account implicitly

by allowing some extent of steric clashes.191,192 Each candidate

transformation is further evaluated by a scoring function that

considers both geometric fit and atomic desolvation energy. So,

candidates are ranked according to a geometric shape comple-

mentarity score, where surface contact is scored positively and

‘‘acceptable’’ steric clashes are penalized.191 Finally, an RMSD

clustering is applied to the candidate solutions to remove super-

fluous solutions. PatchDock does a fast transformational search,

which is driven by local feature matching and utilizes advanced

data structures and spatial pattern detection techniques, such as

geometric hashing and pose clustering.23 PatchDock enables

integration of external information concerning potential binding

sites such as restricting the matching stage to patches that

include residues important for binding.192

Although PatchDock does not perform side-chain refinement,

recently a new server was launched by the same authors: Fire-

Dock (http://bioinfo3d.cs.tau.ac.il/FireDock), which includes

optimization of side-chain conformations and rigid-body orienta-

tion, and allows performing a high-throughput refinement.193

RosettaDock

RosettaDock uses real-space Monte Carlo minimization (MCM)

on both rigid-body and side-chain degrees of freedom to identify

the lowest free energy of the docked proteic complex.91 After a

low-resolution search, explicit side chains are added to the pro-

tein backbones using a backbone-dependent rotamer packing

algorithm. The sampling problem is attacked with supercomput-

ing clusters to create very large numbers of decoys, which are

discriminated using a scoring function including van der Waals

and solvation interactions, hydrogen bonding, residue-residue

pair statistics, and rotamer probabilities. Decoys are then ranked,

clustered, manually inspected, and selected. Algorithm conver-

gence, as measured by solution degeneracy after decoy cluster-

ing, is used as a final criterion in decoy selection.74,91 Recent

modifications of the protocol have improved side-chain model-

ing by enhancing side-chain conformational sampling through

gradient based off-rotamer optimization first introduced by

Abagyan et al.,194 and also by including information from the

unbound structures.147 Prediction are usually performed without

including any a priori biological information, being the energy

of a model the primary criterion for the selection of the submis-

sions. However, in some cases, biological information con-

straints can be used.91 To select the final models, the largest

clusters and best scoring decoys can be examined manually to

look for special features such as specific contacts (i.e., close

contacts, hydrogen bonds, or hydrophobic packing), chemical

environment (exposed hydrophobic groups or buried polar

groups), overall fit (size and shape of interface or the presence

of voids at the interface), and general arrangement (the number

of complementarity determining region loops interacting with

the antigen).91

Baker uses a modified version of the RosettaDock that

includes an additional local refinement of models, the energy fil-

ters were transformed into target-specific at each step, resulting

in maximal enrichment of low-energy models in the global

run.195 The increased sampling of side-chain conformations is

achieved through an additional step that includes off-rotamer,

gradient-based minimization (RTMIN: Rotamer Trial with Mini-

mization in torsion space). Additionally, side-chain conforma-

tions of the free monomers are added to the rotamers from the

backbone dependent library. For the prediction of the structure

of homomultimers, there is a search for the optimal conforma-

tion within the space of symmetric conformations. The homo-

multimer is created from symmetry operations based on the ordi-

nates, ensuring full sampling of possible symmetric conforma-

tions.196

Recently, a RosettaDock server (http://rosettadock.graylab.

jhu.edu) was developed, which allows the identification of low-

energy conformations of a protein–protein interaction, near a
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given starting configuration, by optimizing rigid-body orientation

and side-chain conformations.197

SKE-DOCK

Initially this server used the benzene cluster (BC) fitting as a

searching method but, as the results of earlier CAPRI rounds

showed that it is impossible to obtain a fully correct docking

structure, if the docking structures generated by BC fitting

proved to be wrong, that searching method would be changed

by a geometric docking method.198 Two of the main advantages

of the geometric docking, which superimposes a pair of quadran-

gular pyramids representing the local shape feature of the recep-

tor or ligand, are its speed or alternatively the number of sam-

ples processed. To remove side-chain clashes it was used the

automated homology modeling program FAMS, which is based

on database searches for homologous structures and simulated

annealing energy minimization, and includes main chain adjust-

ments. They use a knowledge-based scoring function to calculate

the model quality from the side-chain environment of each

amino acid residue from three parameters: the fraction of the

molecular surface area of the side-chain covered by the polar

atom, the fraction of the side-chain area buried by some other

atoms, and the secondary structure.199,200

SmoothDock

SmoothDock is an algorithm that includes four steps: rigid body

docking using the FFT-based program DOT,162 reranking of the

structures according to a free energy estimate that includes both

desolvation and electrostatics, filtering of the complexes using a

pairwise RMSD criterion, and subjection of the 25 largest clus-

ters to a smooth docking discrimination algorithm described in

Camacho and Vajda201 where van der Waals forces are taken

into account.120 Usually no constrains on the binding area are

imposed.120 As an alternative method for refinement, Camacho

and Vajda were able to exploit the distance dependencies of var-

ious energy functions to optimize the geometric position of the

ligand with respect to the receptor. They have shown that the

electrostatic component dominates the energy equation while

the proteins are far apart, guiding the correct interfaces towards

each other. As the proteins approach each other, the desolvation

component plays a larger role in the energetics of interaction.

Finally, once the interfaces become fully desolvated, the van der

Waals energy plays a much more dominant role. They consider

these distant-dependent properties of protein–protein binding and

linearly increase the vdW contribution to binding with respect to

the electrostatic and desolvation components of the free energy

as the software progresses. This refinement has the capability of

refining clusters of protein complexes from 10 Angstroms (Å)

from the native complex to fewer than 4 Å from the native.

Lastly, each cluster is refined by linearly varying the weights of

the van der Waals forces, atomic contact potential (ACP), and

electrostatic components to the free energy of binding.40

ZDOCK

ZDOCK is a rigid body FFT based algorithm that combines

shape complementarity, desolvation, and electrostatics. It

searches the rotational space explicitly being the translational

space searched by using an FFT algorithm.82,124 ZDOCK should

be use in combination with RDOCK that is an energy minimization

algorithm for refining and reranking ZDOCK results.90,202–204

Biological information should be used on some level to discour-

age contacts between certain residues in the ZDOCK predic-

tions. Blocking of the chosen atoms of the residues may be

done.202–204 ZDOCK is usually used in conjugation with

RDOCK. RDOCK is implemented as a protocol in CHARMm

involving the following three steps: remove clashes that occur

from the soft-shape complementarity parameter in ZDOCK that

allows for small conformational change; optimize polar interac-

tions; and optimize charge interactions. The key factor of

RDOCK is a three stage energy minimization scheme, followed

by the evaluation of electrostatic and desolvation energies.

RDOCK represents a simple approach toward refining unbound

docking predictions.202–204 After the use of RDOCK the predic-

tions are rescored using both electrostatics and desolvation

terms, and the new scores are use to re-rank the top ZDOCK

predictions.82,90,202 Thus, the method used by the authors

include: ZDOCK, RDOCK, clustering of the top predictions

after RDOCK to reduce structural redundancy, contact filtering

and manual inspection.82,90,202,204

As the RDOCK minimization step can be lengthy and its

success is limited by the number of near-native structures pro-

duced by ZDOCK, the authors developed a new program:

ZRANK (Zlab Rerank) that quickly reranks the rigid body dock-

ing results from ZDOCK.205,206

Table 4 resumes all the crucial characteristics of the soft-

wares described earlier. We focus essentially in the algorithm

used for searching and scoring, the use of biological informa-

tion, flexibility and symmetry. Nowadays the majority of the

methods include a step of side-chain modeling. RosettaDock91

as well as ICM185 and the Bates three-dimensional-Dock3

group uses more than one strategy to handle side-chain flexibil-

ity such as rotamer library, energy minimization, pseudo-

Brownian Monte Carlo minimization or multiple copy refine-

ment techniques. HADDOCK4 uses simulated annealing start-

ing from several side-chain conformations for each residues

and Attract44 incorporates side-chain flexibility at the docking

step. Backbone flexibility is very difficult to treat. Usually a

global refinement step is introduced that enables only small

backbone adjustments. HADDOCK4 and the version of three-

dimensional-Dock3 of the Bates group allow backbone flexibil-

ity being able of producing larger structural deformations than

the first ones. Molfit188 and PatchDock23,185 can handle confor-

mational changes of any sizes such as the ones involving

movements of whole domains. A large number of the softwares

introduced earlier have produced a way for docking identical

subunits into symmetrical assemblies. We can also observe that

there are a large number of methods for the scoring of the

results, which can use different combination of terms such as

shape complementarity, van der Waals, Coulomb and desolva-

tion terms, rotamer probabilities, contact pair potentials or

knowledge-based potentials. Knowledge of the binding site is

very important to guide the protein–protein docking procedure,

and biological and structural information is becoming widely

used as experimental restrains to guide the search or in order
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Table 6. Summary of Docking Predictions in the CAPRI Contest.

Softwares T01 T02 T03 T04 T05 T06 T07 T08 T09 T10 T11 T12 T13 T14 T18 T19 T20 T21 T22 T23

Attract – . – – – – – ** 0 – – – – *** 0 ** 0 0 – –

Bigger – 0 – 0 0 ** * 0 0 0 – 0 0 0 0 0 – – – –

ClusPro – – – – – – – ** 0 0 0 *** * 0 0 * 0 O * 0

3D-DOCK (Sternberg) 0 * 0 0 0 *** * ** 0 0 * * 0 ** 0 * 0 0 – –

3D-DOCK (Bates) – – – 0 0 0 *** * 0 * ** * 0 ** ** * 0 0 – –

DOT * * 0 0 0 ** 0 0 0 0 0 *** *** ** 0 0 0 ** – –

Gramm-X (manual) 0 * 0 – – – – – – 0 – – – ** ** 0 0 0 – –

Gramm-X (server) – – – – – – – – – – – – – – – – – 0 0 0

HADDOCK – – – – – – – – – ** ** 0 *** *** 0 0 0 ** – –

ICM 0 0 ** 0 0 *** ** ** 0 * ** *** * *** ** ** 0 0 – –

Molfit * * 0 0 0 0 *** *** 0 0 * *** 0 ** 0 0 0 0 – –

PatchDock (manual) * 0 0 0 0 0 *** ** * * * * 0 ** ** * 0 0 – –

PatchDock (server) – – – – – – – – – – – – – – – – – – * 0

Rosetta (Baker) 0 0 0 0 0 ** *** – 0 0 ** *** ** *** 0 *** * 0 – –

ROSETTA (Gray) 0 0 0 0 0 ** *** *** – – ** *** 0 0 0 ** 0 ** – 0

SKE-DOCK – – – – – – – – – – – – – – – – – – 0 0

Smooth-Dock (manual) * 0 0 0 0 *** *** ** 0 0 0 *** *** ** ** * 0 0 – –

Smooth-Dock (server) – – – – – – – – – – – – – – – – 0 * 0 0

ZDOCK & RDOCK 0 ** 0 0 0 0 ** ** 0 0 * *** *** *** ** ** 0 * – –

Softwares T24 T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 T35 T36 Summary

Total

ALL UU UB

Attract 0 0 * * 0 0 * NA *** 0 0 0 0 *** 2 7 (23*) 4 (4*) 1 (2*)

** 2

* 3

0 12

Bigger – – – – – – – NA – – – – – *** 0 2 (3*) 1 (1*) 1 (2*)

** 1

* 1

0 12

ClusPro 0 * 0 * 0 0 0 NA 0 0 * 0 0 *** 1 8 (11*) 1 (1*) 4 (7*)

** 1

* 6

0 17

3D-Dock

(Sternberg)

0 0 0 0 0 0 0 NA – – – – – *** 1 8 (12*) 1 (1*) 4 (7*)

** 2

* 5

0 16

3D-Dock

(Bates)

0 * 0 0 0 0 * NA 0 0 0 0 0 *** 1 10 (15*) 3 (5*) 4 (5*)

** 3

* 6

0 17

DOT 0 0 0 * 0 ** 0 NA 0 0 0 0 0 *** 2 9 (17*) 3 (4*) 3 (8*)

** 5

* 3

0 21

Gramm-X

(manual)

0 0 ** * – 0 0 NA 0 0 0 0 0 *** 0 5 (8*) 2 (3*) 2 (3*)

** 3

* 2

0 17

Gramm-X

(server)

0 ** 0 0 0 0 0 NA 0 0 0 0 0 *** 0 1 (2*) 0 (0*) 1 (2*)

** 1

* 0

0 14
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to filter wrong solutions. In Table 5 it is possible to en-

counter the main advantages and disadvantages of the soft-

wares. They are almost related with the time necessary to

perform the docking, capacity of handling side-chain and

backbone flexibility and problems with the scoring function

used.207–210

Table 6. (Continued).

Softwares T24 T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 T35 T36 Summary

Total

ALL UU UB

HADDOCK 0 * ** * 0 ** 0 NA 0 0 ** 0 0 *** 2 10 (20*) 4 (7*) 2 (4*)

** 6

* 2

0 11

ICM * * * 0 0 – – NA – – – – – *** 3 14 (26*) 3 (4*) 7 (14*)

** 6

* 5

0 9

Molfit 0 *** * * 0 * 0 NA ** 0 * 0 0 *** 4 13 (23*) 5 (8*) 4 (10*)

** 2

* 8

0 17

PatchDock (manual) 0 0 0 * 0 0 0 NA ** 0 * 0 0 *** 1 13 (19*) 6 (8*) 3 (5*)

** 4

* 8

0 17

PatchDock (server) 0 ** * 0 – 0 0 NA 0 0 0 0 0 *** 0 3 (4*) 1 (1*) 1 (2*)

** 1

* 2

0 11

Rosetta (Baker) 0 0 ** * 0 0 0 NA *** 0 ** 0 0 *** 5 12 (27*) 4 (9*) 3 (7*)

** 5

* 2

0 17

Rosetta (Gray) 0 0 ** 0 0 0 0 NA *** 0 * 0 0 *** 4 10 (23*) 4 (10*) 3 (8*)

** 5

* 1

0 19

SKE-DOCK 0 ** 0 0 0 0 0 NA 0 0 0 0 0 *** 2 (3*) 1 (1*) 1 (2*)

**

*

0

Smooth-Dock (manual) * * 0 * 0 0 0 NA ** 0 * 0 0 *** 4 14 (26*) 4 (7*) 6 (14*)

** 4

* 6

0 16

SMOOTH-DOCK (server) 0 ** 0 0 0 0 0 NA 0 0 0 0 0 *** 0 2 (3*) 1 (1*) 1 (2*)

** 1

* 1

0 14

ZDOCK & RDOCK * ** * ** 0 * 0 NA 0 0 0 0 * *** 3 16 (29*) 4 (6*) 6 (14*)

** 7

* 6

0 14

‘‘0’’ indicates that none of the submitted predictions was of acceptable quality. ‘‘—’’ indicates that no predictions

were submitted. ‘‘NA’’ indicates that the results are not available, ‘‘*’’ indicates that at least one of the submitted

predictions was in the acceptable range, ‘‘**’’ indicates that at least one of the submitted predictions was of medium

accuracy, and ‘‘***’’ indicates that at least one prediction was of high accuracy. In the total columns it is possible to

encounter the number of hits and the total number of stars (in brackets). UU-Unbound-unbound test cases, UB-

Unbound-bound test cases. ‘‘Man’’ means that the softwares were used under human supervision.
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In Table 6 we have summarized the docking predictions in

the CAPRI contest taken from Wodak et al. 2003,13 2005207 and

2007208 as well as from the CAPRI web address (http://capri.

ebi.ac.uk/). Although important to achieve some conclusions

from the analysis of the results we cannot forget that they are

not statistically very meaningful because the number of targets

is still very small. We can observe that there are a lot of accept-

able results from almost all the groups and that almost every

group (except the servers) have at least one high prediction. If

we analyze the results giving quantitative measures to the nonac-

ceptable, acceptable, medium and high results (a value of 0, 1,

2, or 3), which are present in Table 7, we notice that globally

ICM,185 ZDOCK,82 HADDOCK4 and Baker (modified version

of RosettaDock)195 must be the best predictors, followed closely

by Gray’s version of RosettaDock,91 Camacho group’s Smooth-

Dock120 with manual modifications, and Molfit.188 From the

unbound-unbound test cases we have to emphasize the very

good behavior of RosettaDock and HADDOCK,4 followed by

Wolfson’s group PatchDock23,191 with manual modifications,

Attract, Molfit and Zdock. Regarding the unbound-bound test

cases ICM,185 ZDOCK,82 ClusPro,160 and Camacho group

(SmoothDock120 with manual modifications) have very good results

followed by Molfit,188 HADDOCK4 and Dot.161 Again we should

highlight that the lower performance scores might not necessarily

reflect the quality of the approach used by the different groups.

In Figure 3 we have plotted the number of citations per year

of the docking programs described earlier (data took from ISI

Web of Science considering the references from Table 4). From

Figure 3.1 it is possible to observe that only after 2003 there

was an increase of the number of citations of the protein–protein

docking softwares. Since their publication the most cited soft-

wares are HADDOCK,4 RosettaDock,91 three-dimensional-

Dock,167 BIGGER,28 and Dot.161 It is possible to observe an

increase of the number of citations per year of the Patch-

Dock,23,191 ClusPro,160 HADDOCK,4 RosettaDock91 and

ZDOCK.82 We have to stress that even though HADDOCK4 is a

recent software, it seems to be very popular presenting a clearly

higher number of citations per year. If we consider just papers

that apply the different softwares to specific biological problems

(represented in Figure 3.2) Haddock4 is the most popular, fol-

lowed by ClusPro,160 PatchDock23,191 and RosettaDock.91

The servers are also becoming very used because they greatly

improve the utility of the docking approaches in the biological

community. PatchDock23,191 since January of 2004 has more

than 30,000 submissions, 12,000 of them in 2008, from around

4000 different users (Dr. Schneidman-Duhovny, private commu-

nication); ClusPro160 since January of 2003 had around 18,600

jobs submitted by 2700 different users worldwide (Dr. Comeau,

private communication); the new version of ClusPro (PIPER)165

is still in development but had already 300 jobs submitted from

about 80 different users (Dr. Brenk, private communication);

Gramm-X178 since 2006 has processed more than 12,000 jobs

submitted by more than 2300 users (Dr. Tovchigrechko, private

communication); RosettaDock91 server opened in April 2007,

and over 150 individuals have used the web server for more

than 800 docking jobs; SKE-DOCK198 has monthly a 1–2 sub-

missions by 1–2 users (Dr. Terashi, private communication); and

HADDOCK server since June 1st 2008 has 1519 submissions

and 197 registered users.211

Conclusion

A comprehensive understanding of the interactions between pro-

teins is indispensable for interpreting many biochemical phe-

nomena and is of supreme practical relevance in pharmaceutical

and medicinal sciences. Computational docking tries to predict

the correct binding mode of the interacting partners, which has

been demonstrated to be a difficult assignment considering the

macromolecular nature of the protein. Thus, protein–protein

docking is a difficult challenge especially because of the differ-

ences between the conformations of the bound and unbound

molecules, which increase the dimensionality of the problem.

Usually, the protein–protein docking procedure begins by

treating the proteins as rigid bodies, perhaps with some surface

softness, searching the six-dimensional space of relative protein

orientations (translational and rotational) and identifying a set of

candidate structures using some simple scoring function, with

shape complementarity playing a major responsibility. Rescoring

with a better function of these structures is followed in order to

discriminate near-native orientations. Then full atomic detail is

added (if not before) as well as allowing the movement of the

sidechains and possibly backbone, minimizing an energy func-

tion. If extra biological information about the location of the

interface is available, it can also be used as early as possible to

simplify the search. From the results of the CAPRI experiment

and the software popularity we can observe that ICM,185

ZDOCK,82 HADDOCK4 and ROSETTADOCK91 seem to be

some of the best predictors that are most commonly used. Soft-

wares, such as HADDOCK4, which are capable of dealing with

side-chain and backbone flexibility as well as using biological

information regarding the complex in the searching stage, seem

to perform better in the protein–protein docking world.

However, because of the complexity of the problem, protein–

protein docking is still largely at the theoretical stage, and con-

Table 7. Summary of Docking Predictions in the CAPRI Contest.

Software ALL UU UB

Attract 0,68 1,00 0,67

Bigger 0,23 0,33 0,25

3D-Dock (Bates) 0,56 0,63 0,63

3D-Dock (Stenrsberg) 0,48 0,13 0,70

DOT 0,57 0,44 0,90

Gramm-X (man) 0,40 0,43 0,75

ICM 1,13 0,57 1,40

HADDOCK 0,95 1,17 1,00

Molfit 0,77 0,89 1,00

PatchDock (man) 0,63 1,00 0,50

Rosetta (Baker) 0,93 1,00 0,78

Rosetta(Gray) 0,79 1,43 0,80

Smooth (man) 0,87 0,78 1,40

ZDOCK & RDOCK 0,97 0,67 1,40

UU, Unbound-unbound test cases; UB, Unbound-bound test cases;

‘‘Man’’ means that the softwares were used under human supervision.
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Figure 3. Number of citations per year of the docking programs described earlier. Data taken from

ISI Web of Science (February of 2007) considering the references from Table 4. (a) All articles are

considered.; (b) Only the articles with experimental predictions were considered.

339Protein–Protein Docking

Journal of Computational Chemistry DOI 10.1002/jcc



tinues to be a significant scientific challenge to structural biolo-

gists and the biomolecular modeling community.
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